Zobrazeno 1 - 10
of 705
pro vyhledávání: '"NAKAMURA, Takuji"'
We define twelve equivalence relations on $\mathbb{Z}^{m}$ ($m\geq2$) by means of Fox's $\mathbb{Z}$-colorings of (classical, virtual, or pure) $m$-braids and $(m,m)$-tangles. One of them corresponds to the Hurwitz action of the $m$-braid group on $\
Externí odkaz:
http://arxiv.org/abs/2410.11599
We study virtualized Delta, sharp, and pass moves for oriented virtual links, and give necessary and sufficient conditions for two oriented virtual links to be related by the local moves. In particular, they are unknotting operations for oriented vir
Externí odkaz:
http://arxiv.org/abs/2401.13195
We introduce a local deformation called the virtualized $\Delta$-move for virtual knots and links. We prove that the virtualized $\Delta$-move is an unknotting operation for virtual knots. Furthermore we give a necessary and sufficient condition for
Externí odkaz:
http://arxiv.org/abs/2401.12506
Autor:
Sanefuji, Masafumi, Nakamura, Takuji, Higuchi, Naoya, Niizuma, Hidetaka, Kawachi, Yasuhiro, Shiohama, Tadashi, Yoshida, Yuichi, Asahina, Akihiko, Matsuo, Muneaki
Publikováno v:
In Brain and Development February 2025 47(1)
We introduce three kinds of invariants of a virtual knot called the first, second, and third intersection polynomials. The definition is based on the intersection number of a pair of curves on a closed surface. The calculations of intersection polyno
Externí odkaz:
http://arxiv.org/abs/2102.12067
Autor:
Ohsawa, Ryou, Hirota, Akira, Morita, Kohei, Abe, Shinsuke, Kastinen, Daniel, Kero, Johan, Szasz, Csilla, Fujiwara, Yasunori, Nakamura, Takuji, Nishimura, Koji, Sako, Shigeyuki, Watanabe, Jun-ichi, Aoki, Tsutomu, Arima, Noriaki, Arimatsu, Ko, Doi, Mamoru, Ichiki, Makoto, Ikeda, Shiro, Ita, Yoshifusa, Kasuga, Toshihiro, Kobayashi, Naoto, Kokubo, Mitsuru, Konishi, Masahiro, Maehara, Hiroyuki, Miyata, Takashi, Mori, Yuki, Morii, Mikio, Morokuma, Tomoki, Motohara, Kentaro, Nakada, Yoshikazu, Okumura, Shin-ichiro, Sarugaku, Yuki, Sato, Mikiya, Shigeyama, Toshikazu, Soyano, Takao, Takahashi, Hidenori, Tanaka, Masaomi, Tarusawa, Ken'ichi, Tominaga, Nozomu, Urakawa, Seitaro, Usui, Fumihiko, Yamashita, Takuya, Yoshikawa, Makoto
Publikováno v:
Planetary and Space Science 194 (2020) 10511
Radar and optical simultaneous observations of meteors are important to understand the size distribution of the interplanetary dust. However, faint meteors detected by high power large aperture radar observations, which are typically as faint as 10 m
Externí odkaz:
http://arxiv.org/abs/2008.08942
The writhe polynomial is a fundamental invariant of an oriented virtual knot. We introduce a kind of local moves for oriented virtual knots called shell moves. The first aim of this paper is to prove that two oriented virtual knots have the same writ
Externí odkaz:
http://arxiv.org/abs/1905.03489
For a virtual knot $K$ and an integer $r\geq 0$, the $r$-covering $K^{(r)}$ is defined by using the indices of chords on a Gauss diagram of $K$. In this paper, we prove that for any finite set of virtual knots $J_0,J_2,J_3,\dots,J_m$, there is a virt
Externí odkaz:
http://arxiv.org/abs/1811.10852
Autor:
Samejima, Hiroaki, Yagioka, Atsushi, Kimiwada, Kenji, Chonan, Yuya, Yamane, Tsuyoshi, Ohashi, Yuji, Morimoto, Sho, Ohtomo, Ryo, Nagaoka, Kazunari, Oka, Norikuni, Nakamura, Takuji
Publikováno v:
In Soil & Tillage Research March 2022 217
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.