Zobrazeno 1 - 10
of 26
pro vyhledávání: '"N. T. Vorob'ev"'
Autor:
N. T. Vorob’ev, E. D. Volkova
Publikováno v:
Russian Mathematics. 66:12-17
Publikováno v:
Ukrainian Mathematical Journal. 73:1063-1070
Autor:
N. T. Vorob’ev, E. D. Lantsetova
Publikováno v:
Mathematical Notes. 110:655-665
Autor:
N. T. Vorob’ev, E. D. Volkova
We find conditions for the Fitting sets of a group to satisfy the distributive and modular laws.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5413c933325c647306d810b94cba8a3a
https://rep.vsu.by/handle/123456789/36518
https://rep.vsu.by/handle/123456789/36518
Publikováno v:
Journal of Algebra. 522:124-133
In the theory of formations of finite soluble groups, a well known result of Bryce and Cossey is: a local formation F is a Fitting class if and only if every value of the canonical formation function F of F is a Fitting class. In this paper, we give
Autor:
N. T. Vorob’ev, T. B. Karaulova
Publikováno v:
Mathematical Notes. 105:204-215
Vorob`ev, N. T. Hartley sets and injectors of a finite group / N. T. Vorob`ev, T. B. Karaulova // Mathematical Notes. – 2019. – Vol. 105, № 1-2. – Р. 204–215.
By a Fitting set of a group G one means a nonempty set of subgroups F of a
By a Fitting set of a group G one means a nonempty set of subgroups F of a
Publikováno v:
Algebra Colloquium. 25:671-680
Let G be a finite group and [Formula: see text] be a Hartley set of G. In this paper, we prove the existence and conjugacy of [Formula: see text]-injectors of G and describe the characterization of injectors via radicals. As applications, some known
Publikováno v:
Communications in Algebra. 46:217-229
Let G be some generalized π-soluble groups and ℱ be a Fitting set of G. In this paper, we prove the existence and conjugacy of ℱ-injectors of G and give a description of the structure of the injectors.
Let σ be a partition of the set of all primes P . If G is a finite group and F is a Fitting class of finite groups, the symbol σ ( G ) denotes the set { σ i | σ i ∩ π ( | G | ) ≠ ∅ } and σ ( F ) = ∪ σ ∈ F σ ( G ) . We call any funct
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::40c05856c4792aee843da16d92be3a5d
https://rep.vsu.by/handle/123456789/33410
https://rep.vsu.by/handle/123456789/33410
Autor:
A. V. Martsinkevich, N. T. Vorob’ev
Publikováno v:
Siberian Mathematical Journal. 56:624-630
Denote by P the set of all primes and take a nonempty set π ⊆ P. A Fitting class F = (1) is called normal in the class Sπ of all finite soluble π-groups or π-normal, whenever F ⊆ Sπ and for every G ∈ Sπ its F-injectors constitute a normal