Zobrazeno 1 - 10
of 20
pro vyhledávání: '"N. G. Khoma"'
Publikováno v:
Ukrainian Mathematical Journal. 52:1068-1074
On the basis of the exact solution of the linear Dirichlet problem \(u_{tt} - u_{xx} = f\left( {x,t} \right)\), \(u\left( {0,t} \right) = u\left( {\pi ,t} \right) = 0,{\text{ }}u\left( {x,0} \right) = u\left( {x,2\pi } \right) = 0,\)\(0 \leqslant x \
Autor:
L. G. Khoma, N. G. Khoma
Publikováno v:
Ukrainian Mathematical Journal. 51:319-323
We study the boundary-value problemutt -uxx =g(x, t),u(0,t) =u (π,t) = 0,u(x, t +T) =u(x, t), 0 ≤x ≤ π,t ∈ ℝ. We findexact classical solutions of this problem in three Vejvoda-Shtedry spaces, namely, in the classes of\(\frac{\pi }{q} - , \f
Autor:
N. G. Khoma
Publikováno v:
Ukrainian Mathematical Journal. 50:1917-1923
In three spaces, we find exact classical solutions of the boundary-value periodic problem utt - a2uxx = g(x, t) u(0, t) = u(π, t) = 0, u(x, t + T) = u(x, t), x ∈ ℝ, t ∈ ℝ. We study the periodic boundary-value problem for a quasilinear equati
Publikováno v:
Ukrainian Mathematical Journal. 50:929-933
On the basis of properties of the Vejvoda-Shtedry operator, we obtain solvability conditions for the 2π-periodic problem $$u_{tt} - u_{xx} = F\left[ {u,u_t } \right], u\left( {0,t} \right) = u\left( {\pi ,t} \right) = 0, u\left( {x,t + 2\pi } \right
Publikováno v:
Ukrainian Mathematical Journal. 49:334-341
We investigate the linear periodic problem u tt −u xx =F(x, t), u(x+2π, t)=u(x, t+T)=u(x, t), ∈ ℝ2, and establish conditions for the existence of its classical solution in spaces that are subspaces of the Vejvoda-Shtedry spaces.
Autor:
L. G. Khoma, N. G. Khoma
Publikováno v:
Ukrainian Mathematical Journal. 48:453-459
We study a boundary-value periodic problem for the quasilinear equationu ff −u xx =F[u,u f u x ],u(0,t) =u (π,t),u (x, t + π/q) =u(x, t), 0 ≤x ≤π,t ∈ ℝ,q ∈ ℕ. We establish conditions under which the theorem on the uniqueness of a smo
Autor:
N. G. Khoma
Publikováno v:
Ukrainian Mathematical Journal. 47:1964-1967
We study a periodic boundary-value problem for the quasilinear equationu tt−uxx=F[u, ut], u(0, t)=u(π, t)=0,u(x, t+2π)=u(x, t). We establish conditions that guarantee the validity of the uniqueness theorem.
Autor:
Yu. A. Mitropol'skii, N. G. Khoma
Publikováno v:
Ukrainian Mathematical Journal. 47:1563-1570
We study a periodic boundary-value problem for a quasilinear equation with the d'Alembert operator on the left-hand side and a nonlinear operator on the right-hand side and establish conditions under which the solution of the indicated problem is uni
Publikováno v:
Ukrainian Mathematical Journal; Jul2000, Vol. 52 Issue 7, p1068-1074, 7p
Autor:
Khoma, N.
Publikováno v:
Ukrainian Mathematical Journal; Nov1998, Vol. 50 Issue 11, p1755-1764, 10p