Zobrazeno 1 - 5
of 5
pro vyhledávání: '"N., Suhas B."'
In this note, we continue the study of Seshadri constants on blow-ups of Hirzebruch surfaces initiated in arXiv:2312.14555. Now we consider blow-ups of ruled surfaces more generally. We propose a conjecture for classifying all the negative self-inter
Externí odkaz:
http://arxiv.org/abs/2407.18678
Let $e,r \ge 0$ be integers and let $\mathbb{F}_e : = \mathbb{P}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(-e))$ denote the Hirzebruch surface with invariant $e$. We compute the Seshadri constants of an ample line bundle at an arbi
Externí odkaz:
http://arxiv.org/abs/2312.14555
A ring $R$ is said to be i-reversible if for every $a,b$ $\in$ $R$, $ab$ is a non-zero idempotent implies $ba$ is an idempotent. It is known that the rings $M_n(R)$ and $T_n(R)$ (the ring of all upper triangular matrices over $R$) are not i-reversibl
Externí odkaz:
http://arxiv.org/abs/2207.07344
Let $C$ be a chain-like curve over $\mathbb{C}$. In this paper, we investigate the rationality of moduli spaces of $w$-semistable vector bundles on $C$ of arbitrary rank and fixed determinant by putting some restrictions on the Euler characteristics.
Externí odkaz:
http://arxiv.org/abs/2206.02372
Let $C$ be a chain-like curve having $n$ smooth components and $n-1$ nodes, where $n \geq 2$. Let $E$ be a vector bundle on $C$ and $V \subseteq H^0(E)$ be a linear subspace generating $E$. We investigate the (semi)stability of the kernel bundle $M_{
Externí odkaz:
http://arxiv.org/abs/2012.13130