Zobrazeno 1 - 10
of 72
pro vyhledávání: '"N., Suhas"'
In this note, we continue the study of Seshadri constants on blow-ups of Hirzebruch surfaces initiated in arXiv:2312.14555. Now we consider blow-ups of ruled surfaces more generally. We propose a conjecture for classifying all the negative self-inter
Externí odkaz:
http://arxiv.org/abs/2407.18678
Let $e,r \ge 0$ be integers and let $\mathbb{F}_e : = \mathbb{P}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(-e))$ denote the Hirzebruch surface with invariant $e$. We compute the Seshadri constants of an ample line bundle at an arbi
Externí odkaz:
http://arxiv.org/abs/2312.14555
Autor:
Ruey-Kuang Cheng, N. Suhas Jagannathan, Ahmad Ismat Kathrada, Suresh Jesuthasan, Lisa Tucker-Kellogg
Publikováno v:
BMC Neuroscience, Vol 25, Iss S1, Pp 1-15 (2024)
Abstract Background The habenula is a major regulator of serotonergic neurons in the dorsal raphe, and thus of brain state. The functional connectivity between these regions is incompletely characterized. Here, we use the ability of changes in irradi
Externí odkaz:
https://doaj.org/article/6ee277baa2d94006a599234b88c89fe1
A ring $R$ is said to be i-reversible if for every $a,b$ $\in$ $R$, $ab$ is a non-zero idempotent implies $ba$ is an idempotent. It is known that the rings $M_n(R)$ and $T_n(R)$ (the ring of all upper triangular matrices over $R$) are not i-reversibl
Externí odkaz:
http://arxiv.org/abs/2207.07344
Autor:
N Suhas Jagannathan, Javier Yu Peng Koh, Younghwan Lee, Radoslaw Mikolaj Sobota, Aaron T Irving, Lin-fa Wang, Yoko Itahana, Koji Itahana, Lisa Tucker-Kellogg
Publikováno v:
eLife, Vol 13 (2024)
Bats have unique characteristics compared to other mammals, including increased longevity and higher resistance to cancer and infectious disease. While previous studies have analyzed the metabolic requirements for flight, it is still unclear how bat
Externí odkaz:
https://doaj.org/article/7ab045543ac841e5b6c2b6512e26abdd
Let $C$ be a chain-like curve over $\mathbb{C}$. In this paper, we investigate the rationality of moduli spaces of $w$-semistable vector bundles on $C$ of arbitrary rank and fixed determinant by putting some restrictions on the Euler characteristics.
Externí odkaz:
http://arxiv.org/abs/2206.02372
Autor:
Cheng, Ruey-Kuang1,2 (AUTHOR), Jagannathan, N. Suhas3,4 (AUTHOR), Kathrada, Ahmad Ismat1,5 (AUTHOR), Jesuthasan, Suresh1,2 (AUTHOR) sureshj@ntu.edu.sg, Tucker-Kellogg, Lisa3,4 (AUTHOR) tuckerNUS@gmail.com
Publikováno v:
BMC Neuroscience. 4/16/2024, Vol. 25 Issue 1, p1-12. 12p.
Let $C$ be a chain-like curve having $n$ smooth components and $n-1$ nodes, where $n \geq 2$. Let $E$ be a vector bundle on $C$ and $V \subseteq H^0(E)$ be a linear subspace generating $E$. We investigate the (semi)stability of the kernel bundle $M_{
Externí odkaz:
http://arxiv.org/abs/2012.13130
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
In this paper we describe a novel implementation of adaboost for prediction of survival function. We take different variations of the algorithm and compare the algorithms based on system run time and root mean square error. Our construction includes
Externí odkaz:
http://arxiv.org/abs/1709.05515