Zobrazeno 1 - 10
of 20
pro vyhledávání: '"N H Ibragimov"'
Autor:
N. H. Ibragimov
Publikováno v:
Differentialgleichungen und Mathematische Modellbildung: Eine praxisnahe Einführung unter Berücksichtigung der Symmetrie-Analyse
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::54da3f66510a116e1caa2d708d9e26d9
https://doi.org/10.1515/9783110495522-004
https://doi.org/10.1515/9783110495522-004
Autor:
N. H. Ibragimov
Publikováno v:
Differentialgleichungen und Mathematische Modellbildung: Eine praxisnahe Einführung unter Berücksichtigung der Symmetrie-Analyse
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::0b40ed1ff26517503575f763a86e7710
https://doi.org/10.1515/9783110495522-002
https://doi.org/10.1515/9783110495522-002
Autor:
N. H. Ibragimov
Publikováno v:
Differentialgleichungen und Mathematische Modellbildung: Eine praxisnahe Einführung unter Berücksichtigung der Symmetrie-Analyse
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::2a3086a0c2d7cc6e096569d84cfd1e2c
https://doi.org/10.1515/9783110495522-003
https://doi.org/10.1515/9783110495522-003
Autor:
L. V. Ahlfors, S. N. Antoncev, P. P. Belinskiĭ, S. Bergman, A. V. Bicadze, A. A. Deribas, R. M. Garipov, F. W. Gehring, S. K. Godunov, N. H. Ibragimov, N. N. Janenko, V. M. Kuznecov, B. A. Lygovcos, G. I. Marčuk, D. E. Men′šov, G. S. Migirenko, V. N. Monahov, R. Nevalinna, L. V. Ovsjannikov, A. Pfluger, P. Ja. Polubarinova-Kočina, B. V. Šabat, E. N. Šer, J. Serrin, Ju. I. Šokin, I. N. Vekua, L. I. Volkovyskiĭ, H. Weinberger
Autor:
N. H. Ibragimov, S. V. Khabirov
Publikováno v:
Nonlinear Dynamics. 22:61-71
Interest in nonlinear wave equations has been stimulated bynumerous physical applications, such as telecommunication (e.g.nonlinear telegrapher equation), gasdynamics, anisotropic plasticity andnonlinear elasticity, etc. Mathematical models of these
Autor:
V. A. Baikov, N. H. Ibragimov
Publikováno v:
Nonlinear Dynamics. 22:3-13
Recently, the theory of approximate symmetries was developedfor tackling differential equations with a small parameter. This theoryfurnishes us with a tool, e.g. for constructing approximate groupinvariant solutions. Usually, these solutions are dete
Publikováno v:
Nonlinear Dynamics. 15:115-136
New identities relating the Euler–Lagrange, Lie–Backlund and Noether operators are obtained. Some important results are shown to be consequences of these fundamental identities. Furthermore, we generalise an interesting example presented by Noeth
Autor:
N. H. Ibragimov, R. K. Gazizov
Publikováno v:
Nonlinear Dynamics. 17:387-407
Lie group theory is applied to differential equations occurring as mathematical models in financial problems. We begin with the complete symmetry analysis of the one-dimensional Black–Scholes model and show that this equation is included in Sophus
Publikováno v:
Nonlinear Dynamics. 13:395-409
Exact solutions for a class of nonlinear partial differential equations modelling soil water infiltration and redistribution in irrigation systems are studied. These solutions are invariant under two-parameter symmetry groups obtained by the group cl
Autor:
Roy Maartens, N H Ibragimov
Publikováno v:
Journal of Physics A: Mathematical and General. 28:4083-4087
We construct semiscalar linear representations of the inhomogeneous Lorentz group by considering the invariance of linear propagation equations. There is only one semiscalar representation, and the most general linear propagation equation that admits