Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Németh, Adrián"'
Publikováno v:
SIAM J. Numer. Anal. 54-5 (2016), pp. 2799-2832
Strong stability preserving (SSP) methods are designed primarily for time integration of nonlinear hyperbolic PDEs, for which the permissible SSP step size varies from one step to the next. We develop the first SSP linear multistep methods (of order
Externí odkaz:
http://arxiv.org/abs/1504.04107
Autor:
Németh, Adrián, Ketcheson, David
We prove the existence of explicit linear multistep methods of any order with positive coefficients. Our approach is based on formulating a linear programming problem and establishing infeasibility of the dual problem. This yields a number of other t
Externí odkaz:
http://arxiv.org/abs/1504.03930
Autor:
Kocsis, Tihamér A., Németh, Adrián
Optimal Strong Stability Preserving (SSP) Runge--Kutta methods has been widely investegated in the last decade and many open conjectures have been formulated. The iterated implicit midpoint rule has been observed numerically optimal in large classes
Externí odkaz:
http://arxiv.org/abs/1409.8583
Autor:
Bresten, Christopher, Gottlieb, Sigal, Grant, Zachary, Higgs, Daniel, Ketcheson, David I., Németh, Adrian
High-order spatial discretizations with strong stability properties (such as monotonicity) are desirable for the solution of hyperbolic PDEs. Methods may be compared in terms of the strong stability preserving (SSP) time-step. We prove an upper bound
Externí odkaz:
http://arxiv.org/abs/1307.8058
Autor:
BRESTEN, CHRISTOPHER, GOTTLIEB, SIGAL, GRANT, ZACHARY, HIGGS, DANIEL, KETCHESON, DAVID I., NÉMETH, ADRIAN
Publikováno v:
Mathematics of Computation, 2017 Mar 01. 86(304), 747-769.
Externí odkaz:
https://www.jstor.org/stable/mathcomp.86.304.747
Publikováno v:
SIAM Journal on Numerical Analysis, 2016 Jan 01. 54(5), 2799-2832.
Externí odkaz:
http://www.jstor.org/stable/26154759