Zobrazeno 1 - 10
of 34
pro vyhledávání: '"Nábělková, Petra"'
We study the Murray adaptation of the Noyes-Field five-step model of the Belousov-Zhabotinsky (BZ) reaction in the case when a tuning parameter $r$, which determines the level of the bromide ion far ahead of the propagating wave, is bigger than 1 and
Externí odkaz:
http://arxiv.org/abs/2305.07823
Publikováno v:
Journal of Differential Equations 376 (2023) pp. 102-125
We prove the existence of the minimal speed of propagation $c_*(r,b,K) \in [2\sqrt{1-r},2]$ for wavefronts in the Belousov-Zhabotinsky system with a spatiotemporal interaction defined by the convolution with (possibly, "fat-tailed") kernel $K$. The m
Externí odkaz:
http://arxiv.org/abs/2206.03613
Publikováno v:
Discrete and Continuous Dynamical Systems- A 41 (2021) 5979 - 6000
We study the Mackey-Glass type monostable delayed reaction-diffusion equation with a unimodal birth function $g(u)$. This model, designed to describe evolution of single species populations, is considered here in the presence of the weak Allee effect
Externí odkaz:
http://arxiv.org/abs/2010.06058
We study global dynamics of an SIR model with vaccination, where we assume that individuals respond differently to dynamics of the epidemic. Their heterogeneous response is modeled by the Preisach hysteresis operator. We present a condition for the g
Externí odkaz:
http://arxiv.org/abs/2007.04425
Publikováno v:
In Journal of Differential Equations 15 December 2023 376:102-125
Publikováno v:
Journal of Differential Equations 268 (2020) pp. 5156-5178
By proving the existence of non-monotone and non-oscillating wavefronts for the Nicholson's blowflies diffusive equation (the NDE), we answer an open question raised in [16]. Surprisingly, these wavefronts can be observed only for sufficiently small
Externí odkaz:
http://arxiv.org/abs/1906.05711
Publikováno v:
Journal of Nonlinear Science (2020)
In this work, we answer three fundamental questions concerning monostable travelling fronts for the scalar Kolmogorov ecological equation with diffusion and spatiotemporal interaction: these are the questions about their existence, uniqueness and geo
Externí odkaz:
http://arxiv.org/abs/1903.10339
Publikováno v:
Journal of Differential Equations 260 (2016) pp. 6130-6175
We consider the nonlocal KPP-Fisher equation $u_t(t,x) = u_{xx}(t,x) + u(t,x)(1-(K *u)(t,x))$ which describes the evolution of population density $u(t,x)$ with respect to time $t$ and location $x$. The non-locality is expressed in terms of the convol
Externí odkaz:
http://arxiv.org/abs/1504.06902
Publikováno v:
In Journal of Differential Equations 15 April 2020 268(9):5156-5178
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.