Zobrazeno 1 - 10
of 1 489
pro vyhledávání: '"N, Dang"'
Six induced pluripotent stem cell lines from fibroblasts of individuals with CLN3-related conditions
Autor:
Ewelina Dwojak, Danielle O’Mard, Jizhong Zou, Christopher A. Wassif, Sandra Burkett, Michael Eckhaus, Fabio Rueda Faucz, Cameron Padilla, Rafael Villasmil, Wei Zheng, An N. Dang Do
Publikováno v:
Stem Cell Research, Vol 81, Iss , Pp 103563- (2024)
Primary fibroblasts from six individuals with CLN3-related conditions were used to generate induced pluripotent stem cell (iPSC) lines CHDTRi001-B, CHDTRi002-B, CHDTRi003-A, CHDTRi004-B, CHDTRi005-A, and CHDTRi006-E through the expression of four rep
Externí odkaz:
https://doaj.org/article/1f9e0f835d60429483f7603ffd549e24
Autor:
Rachel Liu, Joshua N. Dang, Rhoeun Lee, Jae Jin Lee, Niranjana Kesavamoorthy, Hossein Ameri, Narsing Rao, Hyungjin Eoh
Publikováno v:
Microbiology Spectrum, Vol 12, Iss 8 (2024)
ABSTRACT Tuberculosis (TB) is a leading cause of death among infectious diseases worldwide due to latent TB infection, which is the critical step for the successful pathogenic cycle. In this stage, Mycobacterium tuberculosis resides inside the host i
Externí odkaz:
https://doaj.org/article/d64df2affbe249e6884882d71f92402b
Publikováno v:
IEEE Access, Vol 12, Pp 126679-126692 (2024)
Neuromorphic computing systems are biologically inspired approaches created from many highly connected neurons to model neuroscience theories and solve machine learning problems. They promise to drastically improve the efficiency of critical computat
Externí odkaz:
https://doaj.org/article/af6909c2f3e54242a990bace5374368c
Publikováno v:
Applied Sciences, Vol 14, Iss 17, p 7484 (2024)
Withstanding extreme events is increasingly a significant challenge for the construction industry. Where civil infrastructures remain using traditional concrete, which has low tensile strength, poor durability, and weak crack resistance, in this rega
Externí odkaz:
https://doaj.org/article/0aa9cf9007464187abb82bdd4ae98e3c
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Linh N. Dang, Eskira T. Kahsay, LaTeesa N. James, Lily J. Johns, Isabella E. Rios, Briana Mezuk
Publikováno v:
Injury Epidemiology, Vol 10, Iss 1, Pp 1-18 (2023)
Abstract Background Many studies of injury deaths rely on mortality data that contain limited contextual information about decedents. The National Violent Death Reporting System (NVDRS) is unique among such data systems in that each observation inclu
Externí odkaz:
https://doaj.org/article/6eac1a211c5a421b8f33447d3cf74558
Autor:
Nga T. T. Nguyen, Thuc V. Ngo, Khai K. Nguyen, Vuong Q. Vu, Ye Xia, Minh Q. Tran, Huyen T. Dang, José Matos, Son N. Dang
Publikováno v:
Applied Sciences, Vol 14, Iss 14, p 6140 (2024)
Construction materials are at the forefront of global economic development as they provide the foundation for the infrastructure of other industries, with cementitious materials being predominantly used in construction projects. To promote sustainabl
Externí odkaz:
https://doaj.org/article/64d24ff8470549e3858682d57dda9add
Publikováno v:
IEEE Access, Vol 11, Pp 144095-144112 (2023)
While task mapping for multi-core systems is known as an NP-hard problem, mapping for neuromorphic systems even scale it up due to a high number of neurons per core and a high number of core per system. Moreover, mapping for neuromorphic systems also
Externí odkaz:
https://doaj.org/article/8ef14d2cadf441e3965b4b6911f54fb5
Publikováno v:
IEEE Access, Vol 11, Pp 94664-94678 (2023)
Neuromorphic computing utilizes spiking neural networks (SNNs) to offer power/energy-efficient solutions for complex machine-learning problems in hardware. However, neural circuits are prone to faults caused by variability in the manufacturing flow,
Externí odkaz:
https://doaj.org/article/dbcecd14317941b789258e1acc86c188
Publikováno v:
IEEE Access, Vol 11, Pp 82377-82389 (2023)
Spiking Neural Networks (SNNs) show their potential for lightweight low-power inferences because they mimic the functionality of the biological brain. However, one of the major challenges of SNNs like other neural networks is memory-wall and power-wa
Externí odkaz:
https://doaj.org/article/5efaebcb51b04635b827e657fe04efc2