Zobrazeno 1 - 10
of 49
pro vyhledávání: '"Myronyuk, Margaryta"'
Autor:
Myronyuk, Margaryta
L. Klebanov proved the following theorem. Let $\xi_1, \dots, \xi_n$ be independent random variables. Consider linear forms $L_1=a_1\xi_1+\cdots+a_n\xi_n,$ $L_2=b_1\xi_1+\cdots+b_n\xi_n,$ $L_3=c_1\xi_1+\cdots+c_n\xi_n,$ $L_4=d_1\xi_1+\cdots+d_n\xi_n,$
Externí odkaz:
http://arxiv.org/abs/2308.05694
Autor:
Myronyuk, Margaryta
A. Kagan introduced classes of distributions $\mathcal{D}_{m,k}$ in $m$-dimensional space $\mathbb{R}^m$. He proved that if the joint distribution of $m$ linear forms of $n$ independent random variables belong to the class $\mathcal{D}_{m,m-1}$ then
Externí odkaz:
http://arxiv.org/abs/2211.13021
Autor:
Myronyuk, Margaryta
Heyde proved that a Gaussian distribution on the real line is characterized by the symmetry of the conditional distribution of one linear statistic given another. The present article is devoted to a group analogue of the Heyde theorem. We describe di
Externí odkaz:
http://arxiv.org/abs/2007.12241
Autor:
Myronyuk, Margaryta
Heyde proved that a Gaussian distribution on a real line is characterized by the symmetry of the conditional distribution of one linear form given another. The present article is devoted to an analog of the Heyde theorem in the case when random varia
Externí odkaz:
http://arxiv.org/abs/1906.06099
Autor:
Myronyuk, Margaryta
Characterization theorems for Q-independent random variables in Banach spaces
Externí odkaz:
http://arxiv.org/abs/1901.02079
Autor:
Feldman, Gennadiy, Myronyuk, Margaryta
Let $X$ be a locally compact Abelian group, $\alpha_{j}, \beta_j$ be topological automorphisms of $X$. Let $\xi_1, \xi_2$ be independent random variables with values in $X$ and distributions $\mu_j$ with non-vanishing characteristic functions. It is
Externí odkaz:
http://arxiv.org/abs/1805.09690
Autor:
Myronyuk, Margaryta
Let $X$ be a second countable locally compact Abelian group. We prove some group analogues of the Skitovich--Darmois, Heyde and Kac--Bernstein characterisation theorems for $Q$-independent random variables taking values in the group $X$. The proofs o
Externí odkaz:
http://arxiv.org/abs/1801.01546
Autor:
Myronyuk, Margaryta
Let $\Omega_p$ be the group of $p$-adic numbers, $ \xi_1$, $\xi_2$, $\xi_3$ be independent random variables with values in $\Omega_p$ and distributions $\mu_1$, $\mu_2$, $\mu_3$. Let $\alpha_j, \beta_j, \gamma_j$ be topological automorphisms of $\Ome
Externí odkaz:
http://arxiv.org/abs/1711.10387
Autor:
Myronyuk, Margaryta
Publikováno v:
Journal of Theoretical Probability; Sep2024, Vol. 37 Issue 3, p2646-2664, 19p
Autor:
Myronyuk, Margaryta
In the present paper we find necessary and sufficient conditions for recurrence of random walks on arbitrary subgroups of the group of rational numbers $\mathbb{Q}$.
Externí odkaz:
http://arxiv.org/abs/1411.7136