Zobrazeno 1 - 10
of 101
pro vyhledávání: '"Myriam Regattieri Delgado"'
Publikováno v:
IEEE Access, Vol 10, Pp 9257-9270 (2022)
This paper proposes PredicTour, an approach to process check-ins made by users of location-based social networks (LBSNs), and predict mobility patterns of tourists visiting new countries with or without previous visiting records. PredicTour is compos
Externí odkaz:
https://doaj.org/article/10378291a22b46d2917cccac280b8f31
Publikováno v:
International Transactions in Operational Research
International Transactions in Operational Research, 2023, 30 (2), pp.774-799. ⟨10.1111/itor.12922⟩
International Transactions in Operational Research, 2023, 30 (2), pp.774-799. ⟨10.1111/itor.12922⟩
International audience
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::87405cb8861e2704be3be51f1dd1f71b
https://hal.science/hal-03861824
https://hal.science/hal-03861824
Autor:
Mohamed El Yafrani, Belaïd Ahiod, Hugo Siqueira, Marcella S. R. Martins, Myriam Regattieri Delgado, Roberto Santana, Ricardo Lüders, Huseyin Gokhan Akcay
Publikováno v:
Martins, M S R, El Yafrani, M, Delgado, M, Lüders, R, Santana, R, Siqueira, H V, Akcay, H G & Ahiod, B 2021, ' Analysis of Bayesian Network Learning Techniques for a Hybrid Multi-objective Bayesian Estimation of Distribution Algorithm : a case study on MNK Landscape ', Journal of Heuristics, vol. 27, no. 4, pp. 549-573 . https://doi.org/10.1007/s10732-021-09469-x
This work investigates different Bayesian network structure learning techniques by thoroughly studying several variants of Hybrid Multi-objective Bayesian Estimation of Distribution Algorithm (HMOBEDA), applied to the MNK Landscape combinatorial prob
Publikováno v:
Applied Intelligence. 51:4330-4352
As most of Multi-Objective Evolutionary Algorithms (MOEAs) scale quite poorly when the number of objective functions increases, new strategies have been proposed to face this limitation. Considered one of the most well-succeeded examples of such new
Publikováno v:
Intelligent Systems ISBN: 9783031216886
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::0c55829b709e5e46fd4e3b6918253ce3
https://doi.org/10.1007/978-3-031-21689-3_26
https://doi.org/10.1007/978-3-031-21689-3_26
Publikováno v:
Intelligent Systems ISBN: 9783031216855
BRACIS
BRACIS, Nov 2022, Campinas, Brazil. pp.325-339, ⟨10.1007/978-3-031-21686-2_23⟩
BRACIS
BRACIS, Nov 2022, Campinas, Brazil. pp.325-339, ⟨10.1007/978-3-031-21686-2_23⟩
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::72ad7d64b3669c32055591261e336a2c
https://doi.org/10.1007/978-3-031-21686-2_23
https://doi.org/10.1007/978-3-031-21686-2_23
Publikováno v:
BRACIS
BRACIS, Nov 2021, online, Brazil. pp.155-169, ⟨10.1007/978-3-030-91702-9_11⟩
Intelligent Systems ISBN: 9783030917012
BRACIS, Nov 2021, online, Brazil. pp.155-169, ⟨10.1007/978-3-030-91702-9_11⟩
Intelligent Systems ISBN: 9783030917012
Hyper-heuristics (HHs) are algorithms suitable for designing heuristics. HHs perform the search divided in two levels: they look for heuristic components in the high level and the heuristic is used, in the low level, to solve a set of instances of on
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1182857a64b8c0435dffeb6738df3f75
https://hal.science/hal-03509717
https://hal.science/hal-03509717
Publikováno v:
Anais Estendidos do XI Simpósio Brasileiro de Engenharia de Sistemas Computacionais (SBESC Estendido 2021).
Este artigo visa à análise de desempenho de aplicações desenvolvidas em materializações do Paradigma Orientado a Notificações (PON), no contexto de microcontroladores. A aplicação envolve sensores e atuadores para Internet das Coisas comuni
Autor:
Ricardo Lüders, Mohamed Abd Elaziz, Myriam Regattieri Delgado, Luiz Ledo, Erick Rodríguez-Esparza, Diego Oliva, Marco Peréz-Cisnero, Mohamed El Yafrani, Marcella Scoczynski
Publikováno v:
Scoczynski, M, Oliva, D, Rodríguez-Esparza, E, Delgado, M, Lüders, R, El Yafrani, M, Ledo, L, Elaziz, M A & Peréz-Cisnero, M 2021, A selection hyperheuristic guided by Thompson sampling for numerical optimization . in GECCO 2021 Companion-Proceedings of the 2021 Genetic and Evolutionary Computation Conference Companion . Association for Computing Machinery, GECCO 2021 Companion-Proceedings of the 2021 Genetic and Evolutionary Computation Conference Companion, pp. 1394-1402, 2021 Genetic and Evolutionary Computation Conference, GECCO 2021, Virtual, Online, France, 10/07/2021 . https://doi.org/10.1145/3449726.3463140
GECCO Companion
GECCO Companion
Selection hyper-heuristics have been increasingly and successfully applied to numerical and discrete optimization problems. This paper proposes HHTS, a hyper-heuristic (HH) based on the Thompson Sampling (TS) mechanism to select combinations of low-l
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f681274fcbe0b69a1b1e068252f4cf0b
https://vbn.aau.dk/da/publications/7ef05955-18c1-415d-914f-8d4a2aa239f9
https://vbn.aau.dk/da/publications/7ef05955-18c1-415d-914f-8d4a2aa239f9
Publikováno v:
CEC
Mechanisms for automatic selection of parameters/heuristics used by evolutionary algorithms can provide more robust and independent approaches. In this work we propose an approach composed of a selection hyper-heuristic implemented within the MOEA/DD