Zobrazeno 1 - 10
of 17
pro vyhledávání: '"Mykola Prytula"'
Autor:
Arkadii Kindybaliuk, Mykola Prytula
Publikováno v:
Journal of Applied Mathematics and Computational Mechanics, Vol 13, Iss 3, Pp 85-99 (2014)
Externí odkaz:
https://doaj.org/article/9008b3dd77c34c9d98374d04d145859b
Autor:
Mirosław Luśtyk, Mykola Prytula
Publikováno v:
Opuscula Mathematica, Vol 27, Iss 1, Pp 25-36 (2007)
An algebraic-analytic method for constructing discrete approximations of linear hyperbolic equations based on a generalized d'Alembert formula of the Lytvyn and Riemann expressions for Cauchy data is proposed. The problem is reduced to some special c
Externí odkaz:
https://doaj.org/article/623fb8669e724ad7b77143a867ead726
Publikováno v:
Ukrainian Mathematical Journal. 70:334-339
This short communication is devoted to the study of differential-geometric structure and the Lax – Sato integrability of the reduced Shabat-type, Hirota, and Kupershmidt heavenly equations.
Autor:
Arkadii Kindybaliuk, Mykola Prytula
Publikováno v:
Journal of Mathematical Sciences. 204:280-297
The approximation properties and the conditions of convergence of a computational scheme of the generalized method of Lie-algebraic discrete approximations for the solution of the Cauchy problem with a one-dimensional advection equation are proved. T
Publikováno v:
Nonlinear Oscillations. 12:510-521
We develop a Calogero-type projection-algebraic method of discrete approximations for linear differential equations in Banach spaces and analyze the convergence of finite-dimensional approximations based on the functional-analytic approach to discret
Publikováno v:
Nonlinearity. 19:2115-2122
A new Whitham-type nonlinear evolution equation describing short-wave perturbations in a relaxing medium is studied. Making use of the gradient-holonomic analysis, the bi-Hamiltonicity and complete integrability of the corresponding dynamical system
Autor:
Mykola Prytula, Yu. O. Mitropolsky, Anatoliy K. Prykarpatsky, R. I. Andrushkiw, V. Hr. Samoilenko
Publikováno v:
Journal of Mathematical Physics. 35:1763-1777
The algebraic structure of the gradient‐holonomic algorithm for Lax integrable dynamical systems is discussed. A generalization of the R‐structure approach for the case of operator‐valued affine Lie algebras is used to prove the bi‐Hamiltonia
Autor:
Mykola Prytula, Oksana Bihun
Publikováno v:
PAMM. 4:534-535
A new modification of the the Lie-algebraic scheme for solving partial differential equations with initial and boundary conditions based on constructing quasirepresentations of the Heisenberg-Weyl algebra operators involving boundary conditions is pr
Autor:
Prytula, M. M.1 (AUTHOR) mykola.prytula@gmail.com
Publikováno v:
Journal of Mathematical Sciences. Aug2022, Vol. 265 Issue 4, p682-702. 21p.
Autor:
Kindybaliuk, Arkadii1 a.kindybaluk@mail.ru, Prytula, Mykola1 mykola.prytula@gmail.com
Publikováno v:
Journal of Mathematical Sciences. Jan2015, Vol. 204 Issue 3, p280-297. 18p.