Zobrazeno 1 - 10
of 95
pro vyhledávání: '"Musson, Ian M."'
Autor:
Musson, Ian M.
Let $\mathtt{k}$ be an algebraically closed field of characteristic zero. Let ${\stackrel{{\rm o}}{{\mathfrak{g}}}}$ be the Lie superalgebra ${\mathfrak{sl}}(n|m)$ and let $\mathfrak{W}$ be the Weyl groupoid introduced by Sergeev and Veselov using th
Externí odkaz:
http://arxiv.org/abs/2312.11046
Autor:
Musson, Ian M.
Let $\mathtt{k}$ be an algebraically closed field of characteristic zero. Let $\mathfrak{g} $ be a finite dimensional classical simple Lie superalgebra over $\mathtt{k}$ or $\mathfrak{g} l(m,n)$. In the case that $\mathfrak{g} $ is a Kac-Moody algebr
Externí odkaz:
http://arxiv.org/abs/2211.16456
Autor:
Musson, Ian M.
This paper is a contribution to the study of the geometry of algebras related the Weyl groupoid initiated in \cite{M22}. The Nullstellensatz gives a bijection between radical ideals of such an algebra and their zero loci, the superalgebraic sets. Suc
Externí odkaz:
http://arxiv.org/abs/2211.10190
Autor:
Catoiu, Stefan, Musson, Ian M.
For a simple Lie algebra, Shapovalov elements give rise to highest weight vectors in Verma modules. The usual construction of these elements uses induction on the length of a certain Weyl group element. If $\mathfrak{g}= \mathfrak{sl}(N+1)$ explicit
Externí odkaz:
http://arxiv.org/abs/2208.05831
Autor:
Musson, Ian M.
We give explicit expressions for \vSapovalov elements in Type A Lie algebras and superalgebras. Explicit expressions were already given in arXiv:1710.10528 Section 9, using non-commutative determinants, and in fact our first main results, Theorems 2.
Externí odkaz:
http://arxiv.org/abs/2203.02813
Autor:
Musson, Ian M.
In general it is a difficult problem to construct the lattice of submodules $L(M)$ of a given module $M$. In \cite{St} R. P. Stanley outlined a method for constucting a distributive lattice from a knowledge of its join irreducibles. However it is not
Externí odkaz:
http://arxiv.org/abs/2112.15142
Autor:
Musson, Ian M.
In this paper we prove a Nullstellensatz for supersymmetric polynomials. This gives a bijection between radical ideals and superalgebraic sets. These are algebraic sets which are invariant under the Weyl groupoid of Sergeev and Veselov, \cite{SV2}. N
Externí odkaz:
http://arxiv.org/abs/1905.04163
Autor:
Musson, Ian M.
Publikováno v:
In Journal of Algebra 1 June 2023 623:358-394
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.