Zobrazeno 1 - 10
of 384
pro vyhledávání: '"Music retrieval"'
Publikováno v:
Sensors, Vol 23, Iss 2, p 805 (2023)
In recent years, with the development of the internet, video has become more and more widely used in life. Adding harmonious music to a video is gradually becoming an artistic task. However, artificially adding music takes a lot of time and effort, s
Externí odkaz:
https://doaj.org/article/f0ee284ff938464695d3c9bde657e6ae
Publikováno v:
Applied Sciences, Vol 12, Iss 18, p 9354 (2022)
The subjectivity of listeners’ emotional responses to music is at the crux of optimizing emotion-aware music recommendation. To address this challenge, we constructed a new multimodal dataset (“HKU956”) with aligned peripheral physiological sig
Externí odkaz:
https://doaj.org/article/346745e2a56a4e0691cd342ab5c51d58
Publikováno v:
Algorithms, Vol 15, Iss 5, p 146 (2022)
This paper studies the problem of identifying piano music in various modalities using a single, unified approach called marketplace fingerprinting. The key defining characteristic of marketplace fingerprinting is choice: we consider a broad range of
Externí odkaz:
https://doaj.org/article/cd1e698ad8a94ac5835a826c31d24b0e
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Transactions of the International Society for Music Information Retrieval, Vol 3, Iss 1 (2020)
In this paper, we address the problem of modeling and predicting the music genre preferences of users. We introduce a novel user modeling approach, 'BLLu', which takes into account the popularity of music genres as well as temporal drifts of user lis
Externí odkaz:
https://doaj.org/article/c6a1de440ad248dd98d57bdff030d5b0
Publikováno v:
Transactions of the International Society for Music Information Retrieval, Vol 1, Iss 1, Pp 22-33 (2018)
This work addresses the problem of matching musical audio directly to sheet music, without any higher-level abstract representation. We propose a method that learns joint embedding spaces for short excerpts of audio and their respective counterparts
Externí odkaz:
https://doaj.org/article/3c6e1e9396aa46b192f6f4bdc95d65a6
Autor:
Muh-Chyun Tang, Mang-Yuan Yang
Publikováno v:
Journal of Library and Information Studies, Vol 15, Iss 1, Pp 1-16 (2017)
An experimental study was conducted to assess the effectiveness of the four music discovery tools available on Spotify, a popular music streaming service, namely: radio recommendation, regional charts, genres and moods, as well as following Facebook
Externí odkaz:
https://doaj.org/article/1810d51331b64a58b67bf4566cff7a1e
Linking sheet music images to audio recordings remains a key problem for the development of efficient cross-modal music retrieval systems. One of the fundamental approaches toward this task is to learn a cross-modal embedding space via deep neural ne
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______3361::85cb6d584204a177326a7a7d7ddfee38
https://epub.jku.at/doi/10.1145/3587819.3590968
https://epub.jku.at/doi/10.1145/3587819.3590968
Publikováno v:
EAI Endorsed Transactions on Creative Technologies, Vol 2, Iss 3, Pp 1-10 (2015)
An emerging trend in interactive music performance consists of the audience directly participating in the performance by means of mobile devices. This is a step forward with respect to concepts like active listening and collaborative music making: no
Externí odkaz:
https://doaj.org/article/f4055c3fde5f4326ba659b1b49fdcfe2
Publikováno v:
9th International Conference on Digital Libraries for Musicology.
We introduce phantom curves, a novel music-theoretical concept based on the discrete Fourier transform (DFT), and document the creative process that led to their discovery. In particular, we emphasize the importance of interactive web applications fo