Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Music, Michael"'
Autor:
Music, Michael, Perry, Peter A.
Using the inverse scattering method, we construct global solutions to the Novikov-Veselov equation for real-valued decaying initial data q with the property that the associated Schrodinger operator with potential q is nonnegative. Such initial data a
Externí odkaz:
http://arxiv.org/abs/1502.02632
Autor:
Croke, Ryan, Mueller, Jennifer L, Music, Michael, Perry, Peter, Siltanen, Samuli, Stahel, Andreas
Recent progress in the theory and computation for the Novikov-Veselov (NV) equation is reviewed with initial potentials decaying at infinity, focusing mainly on the zero-energy case. The inverse scattering method for the zero-energy NV equation is pr
Externí odkaz:
http://arxiv.org/abs/1312.5427
Autor:
Music, Michael
The inverse scattering method for the Novikov-Veselov equation is studied for a larger class of Schr\"odinger potentials than could be handled previously. Previous work concerns so-called conductivity type potentials, which have a bounded positive so
Externí odkaz:
http://arxiv.org/abs/1312.0567
A nonlinear scattering transform is studied for the two-dimensional Schrodinger equation at zero energy with a radial potential. First explicit examples are presented, both theoretically and computationally, of potentials with nontrivial singularitie
Externí odkaz:
http://arxiv.org/abs/1211.3520
Autor:
Music, Michael
Publikováno v:
Theses and Dissertations--Mathematics.
For certain initial data, we solve the Novikov-Veselov equation by the inverse scat- tering method. This is a (2+1)-dimensional completely integrable system that gen- eralizes the (1+1)-dimensional Korteweg-de-Vries equation. The method used is the i
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Music, Michael
For certain initial data, we solve the Novikov-Veselov equation by the inverse scat- tering method. This is a (2+1)-dimensional completely integrable system that gen- eralizes the (1+1)-dimensional Korteweg-de-Vries equation. The method used is the i
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::52d14c887426ae37e0cfec64ed6148c1
Autor:
Croke, Ryan, Mueller, Jennifer L, Music, Michael, Perry, Peter, Siltanen, Samuli, Stahel, Andreas
Recent progress in the theory and computation for the Novikov-Veselov (NV) equation is reviewed with initial potentials decaying at infinity, focusing mainly on the zero-energy case. The inverse scattering method for the zero-energy NV equation is pr
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::cb7974846bd9696d8ef9d61be1fb550f
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.