Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Murilo Reolon Scuzziato"'
Autor:
Yoshiaki Sakagami, Vinicius Nunes Folganes, Cesar Alberto Penz, Murilo Reolon Scuzziato, Fabrício Yutaka Kuwabata Takigawa
Publikováno v:
Revista Brasileira de Recursos Hídricos, Vol 27 (2022)
ABSTRACT In this study, we used neural networks known as self-organizing maps (SOMs) to identify clusters of spatial synoptic precipitation patterns. These clusters were compared with the precipitation regime of the ten main hydrographic sub-basins i
Externí odkaz:
https://doaj.org/article/353e562ec7cd4eb990019547c5fe49b5
Publikováno v:
Peer Review. 5:63-87
O emprego de fontes renováveis para geração de energia elétrica ao redor do mundo vem crescendo a cada ano. No entanto, as fontes que apresentam como característica a geração intermitente demandam que o sistema elétrico seja dimensionado pela
Autor:
Murilo Reolon Scuzziato, Fabricio Y. K. Takigawa, Daniel Tenfen, Rubipiara Cavalcante Fernandes
Publikováno v:
IEEE Latin America Transactions. 18:1530-1537
In Brazil, free consumers must follow the criteria established by Law 9.074/95 and participate in the Free Contracting Environment (ACL), regulated by Decree 5.163/04, together with energy generators, traders, importers and exporters. These free cons
Publikováno v:
International Journal of Electrical Power & Energy Systems
The high penetration of intermittent renewable generation has prompted the development of Stochastic Hydrothermal Unit Commitment (SHUC) models, which are more difficult to be solved than their thermal-based counterparts due to hydro generation const
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::23ff1689debe946606febe45557774ae
http://hdl.handle.net/11568/1063004
http://hdl.handle.net/11568/1063004
Publikováno v:
IEEE transactions on sustainable energy
9 (2018): 1307–1317. doi:10.1109/TSTE.2017.2781908
info:cnr-pdr/source/autori:Scuzziato M.R.; Finardi E.C.; Frangioni A./titolo:Comparing Spatial and Scenario Decomposition for Stochastic Hydrothermal Unit Commitment Problems/doi:10.1109%2FTSTE.2017.2781908/rivista:IEEE transactions on sustainable energy (Print)/anno:2018/pagina_da:1307/pagina_a:1317/intervallo_pagine:1307–1317/volume:9
9 (2018): 1307–1317. doi:10.1109/TSTE.2017.2781908
info:cnr-pdr/source/autori:Scuzziato M.R.; Finardi E.C.; Frangioni A./titolo:Comparing Spatial and Scenario Decomposition for Stochastic Hydrothermal Unit Commitment Problems/doi:10.1109%2FTSTE.2017.2781908/rivista:IEEE transactions on sustainable energy (Print)/anno:2018/pagina_da:1307/pagina_a:1317/intervallo_pagine:1307–1317/volume:9
Solving very-large-scale optimization problems frequently require to decompose them in smaller subproblems, which are iteratively solved to produce useful information. One such approach is the Lagrangian relaxation (LR), a general technique that lead
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b2a3799f3ec17632e1e8017288bb57d9
http://hdl.handle.net/11568/881373
http://hdl.handle.net/11568/881373
Publikováno v:
Electric Power Systems Research. 116:201-207
This paper describes a system for the performance evaluation and energy optimization of the real-time operation at Ita Hydropower Plant, which is located in southern Brazil. Using data collected from sensors and meters, several variables of the units
Publikováno v:
Electric Power Systems Research. 107:221-229
One of the most attractive methods to solve large-scale combinatorial optimization problems is the Lagrangian Relaxation (LR). The LR can be seen as a broad range of techniques which supplies a lower bound of the objective function and good starting
Publikováno v:
International Journal of Electrical Power & Energy Systems. 44:7-16
We describe a new model for the hydro unit commitment and loading (HUCL) problem that has been developed to be used as a support tool for day-ahead operation in the Brazilian system. The objective is to determine the optimal unit commitment and gener