Zobrazeno 1 - 10
of 103
pro vyhledávání: '"Mureşan, Claudia"'
We investigate from an algebraic and topological point of view the minimal prime spectrum of a universal algebra, considering the prime congruences w.r.t. the term condition commutator. Then we use the topological structure of the minimal prime spect
Externí odkaz:
http://arxiv.org/abs/2012.04916
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We continue our investigation of paraorthomodular BZ*-lattices (PBZ*-lattices), started in \cite{GLP1+,PBZ2,rgcmfp,pbzsums,pbz5}. We shed further light on the structure of the subvariety lattice of the variety $\mathbb{PBZL}^{\ast }$ of PBZ*-lattices
Externí odkaz:
http://arxiv.org/abs/1911.00094
Autor:
Kwuida, Leonard, Mureşan, Claudia
We study the existence of nontrivial and of representable (dual) weak complementations, along with the lattice congruences that preserve them, in different constructions of bounded lattices, then use this study to determine the finite (dual) weakly c
Externí odkaz:
http://arxiv.org/abs/1909.13419
The {\em reticulation} of an algebra $A$ is a bounded distributive lattice whose prime spectrum of ideals (or filters), endowed with the Stone topology, is homeomorphic to the prime spectrum of congruences of $A$, with its own Stone topology. The ret
Externí odkaz:
http://arxiv.org/abs/1908.11688
Publikováno v:
In Fuzzy Sets and Systems 15 July 2023 463
Autor:
Mureşan, Claudia
PBZ*-lattices are bounded lattice-ordered structures endowed with two complements, called Kleene and Brouwer; by definition, they are the paraorthomodular Brouwer-Zadeh lattices in which the pairs of elements with their Kleene complements satisfy the
Externí odkaz:
http://arxiv.org/abs/1904.10093
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
PBZ*-lattices are algebraic structures related to quantum logics, which consist of bounded lattices endowed with two kinds of complements, named {\em Kleene} and {\em Brouwer}, such that the Kleene complement satisfies a weakening of the orthomodular
Externí odkaz:
http://arxiv.org/abs/1811.01869
Autor:
Mureşan, Claudia
We prove that an infinite (bounded) involution lattice and even pseudo--Kleene algebra can have any number of congruences between $2$ and its number of elements or equalling its number of subsets, regardless of whether it has as many ideals as elemen
Externí odkaz:
http://arxiv.org/abs/1810.00277