Zobrazeno 1 - 10
of 27
pro vyhledávání: '"Muratore, Giosuè"'
Autor:
Muratore, Giosuè
We say that a line in $\mathbb P^{n+1}_k$ is osculating to a hypersurface $Y$ if they meet with contact order $n+1$. When $k=\mathbb C$, it is known that through a fixed point of $Y$, there are exactly $n!$ of such lines. Under some parity condition
Externí odkaz:
http://arxiv.org/abs/2312.12129
Autor:
Muratore, Giosuè
Publikováno v:
Journal of Symbolic Computation, 2024, 125, 102330
We present the Julia package $\verb!ToricAtiyahBott.jl!$, providing an easy way to perform the Atiyah-Bott formula on the moduli space of genus $0$ stable maps $\overline{M}_{0,m}(X,\beta)$ where $X$ is any smooth projective toric variety, and $\beta
Externí odkaz:
http://arxiv.org/abs/2309.03741
Autor:
Muratore, Giosuè
Publikováno v:
Bulletin des Sciences Mathematiques, 2023, 186, 103273
We prove that the moduli space of contact stable maps to $\mathbb{P}^{2n+1}$ of degree $d$ admits a stratification parameterized by graphs. We use it to determine the number of irreducible rational contact curves in $\mathbb{P}^{2n+1}$ with any Schub
Externí odkaz:
http://arxiv.org/abs/2209.01477
Autor:
Muratore, Giosuè, Schneider, Csaba
Publikováno v:
Journal of Symbolic Computation 112 (2022) 164-181
We present an implementation of the Atiyah-Bott residue formula for $\overline{M}_{0,m}(\mathbb{P}^{n},d)$. We use this implementation to compute a large number of Gromov-Witten invariants of genus $0$, including intersection numbers of rational curv
Externí odkaz:
http://arxiv.org/abs/2105.11183
Autor:
Muratore, Giosuè
Publikováno v:
Michigan Mathematical Journal, 2023, 73(4), pp. 875-894
We prove that some Gromov-Witten numbers associated to rational contact (Legendrian) curves in any contact complex projective space with arbitrary incidence conditions are enumerative. Also, we use Bott formula on the Kontsevich space to find the exa
Externí odkaz:
http://arxiv.org/abs/2012.14946
Autor:
Muratore, Giosuè
Publikováno v:
Arkiv for Matematik, 2021, 59(1), pp. 195-211
Let $X$ be a smooth complex projective variety. Using a construction devised to Gathmann, we present a recursive formula for some of the Gromov-Witten invariants of $X$. We prove that, when $X$ is homogeneous, this formula gives the number of osculat
Externí odkaz:
http://arxiv.org/abs/2003.00096
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Muratore, Giosuè Emanuele
Cette thèse est divisée en deux parties. Dans la première partie nous étudions les variétés 2-Fano. Les variétés 2-Fano, définies par De Jong et Starr, satisfont des generalisations de certaines propriétés des varietes Fano. Nous proposons
Externí odkaz:
http://www.theses.fr/2018STRAD004/document
Autor:
Muratore, Giosuè
Publikováno v:
In Bulletin des sciences mathématiques September 2023 186
Autor:
Muratore, Giosuè Emanuele
Publikováno v:
Beitrage zur Algebra und Geometrie, 2020, 61(1), pp. 73-88
Beauville and Donagi proved that the variety of lines $F(Y)$ of a smooth cubic fourfold $Y$ is a hyperk\"ahler variety. Recently, C. Lehn, M.Lehn, Sorger and van Straten proved that one can naturally associate a hyperK\"ahler variety $Z(Y)$ to the va
Externí odkaz:
http://arxiv.org/abs/1711.06218