Zobrazeno 1 - 10
of 548
pro vyhledávání: '"Murata, Miho"'
Autor:
Maryani, Sri, Murata, Miho
In this paper, we consider a resolvent problem arising from the free boundary value problem for the compressible fluid model of Korteweg type, which is called as the Navier-Stokes-Korteweg system, with surface tension in the half-space. The Navier-St
Externí odkaz:
http://arxiv.org/abs/2409.08457
Autor:
Barbera, Daniele, Murata, Miho
In this paper, we consider the model describing viscous incompressible liquid crystal flows, called the Beris-Edwards model, in the half-space.This model is a coupled system by the Navier-Stokes equations with the evolution equation of the director f
Externí odkaz:
http://arxiv.org/abs/2406.19805
Autor:
Akahori, Takafumi, Murata, Miho
We consider nonlinear scalar field equations involving the Sobolev-critical exponent at high frequencies $\omega$. Since the limiting profile of the ground state as $\omega \to \infty$ is the Aubin-Talenti function and degenerate in a certain sense,
Externí odkaz:
http://arxiv.org/abs/2203.13473
Autor:
Murata, Miho, Shibata, Yoshihiro
In this paper, we prove the global well posedness and the decay estimates for a $\mathbb Q$-tensor model of nematic liquid crystals in $\mathbb R^N$, $N \geq 3$. This system is coupled system by the Navier-Stokes equations with a parabolic-type equat
Externí odkaz:
http://arxiv.org/abs/2109.11339
Autor:
Akahori, Takafumi, Murata, Miho
We prove the uniqueness of ground states for combined power-type nonlinear scalar field equations involving the Sobolev critical exponent and a large frequency parameter. This study is motivated by the paper [2] and aims to remove the restriction on
Externí odkaz:
http://arxiv.org/abs/2105.02490
Autor:
Kobayashi, Takayuki, Murata, Miho
In this paper, we consider the compressible fluid model of Korteweg type in a critical case where the derivative of pressure equals to $0$ at the given constant state. It is shown that the system admits a unique, global strong solution for small init
Externí odkaz:
http://arxiv.org/abs/2009.03043
Autor:
Abe, Takashi, Deguchi, Kentaro, Fujimoto, Kenichi, Hasegawa, Kazuko, Hatsuta, Hiroyuki, Hattori, Nobutaka, Hattori, Tatsuya, Ikebe, Shinichiro, Ishida, Yoshinori, Ishikawa, Mitsunori, Isobe, Chiaki, Ito, Kazunori, Ito, Mizuki, Kaneko, Chikako, Kaneko, Satoshi, Kanzato, Naomi, Kawashima, Noriko, Kitamura, Takeshi, Kitayama, Michio, Kimura, Takashi, Kosaka, Satoru, Tetsuya, Maeda, Mochizuki, Hideki, Morimoto, Nobutoshi, Murata, Miho, Naka, Takashi, Negishi, Teruhiko, Nishida, Yoshihiko, Nomoto, Masahiro, Orimo, Satoshi, Saiki, Hidemoto, Sakata, Mayumi, Sato, Akira, Shimo, Yasushi, Suzuki, Keisuke, Takahashi, Ryosuke, Takeda, Atsushi, Tatsuoka, Yoshihisa, Toda, Kazuo, Tomiyama, Masahiko, Toru, Shuta, Tsuboi, Yoshio, Tsujino, Akira, Uozumi, Takenori, Yamada, Hitoshi, Yamamoto, Mitsutoshi, Yoshida, Kazuto, Yoshinaga, Junji, Maeda, Tetsuya, Sugiyama, Kenichiro, Yamada, Kana, Hiraiwa, Ren, Nishi, Masato
Publikováno v:
In Parkinsonism and Related Disorders December 2023 117
Autor:
Murata, Miho, Shibata, Yoshihiro
In this paper, we consider the compressible fluid model of Korteweg type which can be used as a phase transition model. It is shown that the system admits a unique, global strong solution for small initial data in $\mathbb R^N$, $N \geq 3$. In this s
Externí odkaz:
http://arxiv.org/abs/1908.07224
Autor:
Akahori, Takafumi, Murata, Miho
Publikováno v:
In Nonlinear Analysis July 2023 232
Autor:
Nishikawa, Noriko, Murata, Miho, Hatano, Taku, Mukai, Yohei, Saitoh, Yuji, Sakamoto, Takashi, Hanakawa, Takashi, Kamei, Yuichi, Tachimori, Hisateru, Hatano, Kenji, Matsuda, Hiroshi, Taruno, Yosuke, Sawamoto, Nobukatsu, Kajiyama, Yuta, Ikenaka, Kensuke, Kawabata, Kazuya, Nakamura, Tomohiko, Iwaki, Hirotaka, Kadotani, Hiroshi, Sumi, Yukiyoshi, Inoue, Yuichi, Hayashi, Toshihiro, Ikeuchi, Takeshi, Shimo, Yasushi, Mochizuki, Hideki, Watanabe, Hirohisa, Hattori, Nobutaka, Takahashi, Yuji, Takahashi, Ryosuke
Publikováno v:
In Parkinsonism and Related Disorders October 2022 103:129-135