Zobrazeno 1 - 10
of 343
pro vyhledávání: '"Mundici, Daniele"'
Autor:
Mundici, Daniele
We characterize models of Peano arithmetic (PA) with infinitely many infinite primes p such that p + 2 has no finite prime divisor.
Externí odkaz:
http://arxiv.org/abs/2212.10104
Autor:
Mundici, Daniele
In 1931 de Finetti proved what is known as his Dutch Book Theorem. This result implies that the finite additivity {\it axiom} for the probability of the disjunction of two incompatible events becomes a {\it consequence} of de Finetti's logic-operatio
Externí odkaz:
http://arxiv.org/abs/2107.00250
Autor:
Mundici, Daniele
We assess the computational complexity of several decision problems concerning (Murray-von Neumann) equivalence classes of projections of AF-algebras whose Elliott classifier is lattice-ordered. We construct polytime reductions among many of these pr
Externí odkaz:
http://arxiv.org/abs/2104.14415
Autor:
Mundici, Daniele
Publikováno v:
In Journal of Mathematical Analysis and Applications 1 March 2024 531(1) Part 2
Autor:
Mundici, Daniele
Publikováno v:
In Journal of Algebra 1 December 2023 635:689-697
Autor:
Mundici, Daniele
The subject matter of this paper is the geometry of the affine group over the integers, $\mathsf{GL}(n,\mathbb{Z})\ltimes \mathbb{Z}^n$. Turing-computable complete $\mathsf{GL}(n,\mathbb{Z})\ltimes \mathbb{Z}^n$-orbit invariants are constructed for a
Externí odkaz:
http://arxiv.org/abs/1902.00971
Autor:
Mundici, Daniele
Publikováno v:
In Annals of Pure and Applied Logic January 2023 174(1)
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Mundici, Daniele
Let $A$ be a unital AF-algebra whose Murray-von Neumann order of projections is a lattice. For any two equivalence classes $[p]$ and $[q]$ of projections we write $[p]\sqsubseteq [q]$ iff for every primitive ideal $\mathfrak p$ of $A$ either $p/\math
Externí odkaz:
http://arxiv.org/abs/1806.03970
Autor:
Mundici, Daniele
Algorithmic issues concerning Elliott local semigroups are seldom considered in the literature, although these combinatorial structures completely classify AF algebras. In general, the addition operation of an Elliott local semigroup is {\it partial}
Externí odkaz:
http://arxiv.org/abs/1711.01947