Zobrazeno 1 - 10
of 331
pro vyhledávání: '"Multidimensional Chebyshev's inequality"'
Publikováno v:
Recercat: Dipósit de la Recerca de Catalunya
Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya)
Recercat. Dipósit de la Recerca de Catalunya
instname
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya)
Recercat. Dipósit de la Recerca de Catalunya
instname
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
We analyze whether a given set of analytic functions is an Extended Chebyshev system. This family of functions appears studying the number of limit cycles bifurcating from some nonlinear vector field in the plane. Our approach is mainly based on the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2d15ab3ed7396c65aaa96bd0a177fb3d
http://hdl.handle.net/2072/410471
http://hdl.handle.net/2072/410471
Autor:
Songfeng Zheng
Publikováno v:
Statistics & Probability Letters. 131:87-92
Using a refined arithmetic–geometric mean inequality, this paper gives an improved version of Hoeffding’s inequality which has a closed form and is easy to evaluate. Numerical simulation comparing the performance of the proposed inequality to the
Publikováno v:
Applied Mathematics and Computation. 313:235-244
Two weighted inequalities for real non-negative sequences are proven. The first one represents a generalization of the Szőkefalvi Nagy inequality for the variance, and the second a generalization of the discrete Chebyshev inequality for two real seq
Autor:
Songfeng Zheng
Publikováno v:
Communications in Statistics - Theory and Methods. 47:4152-4159
This paper gives an improvement to Bennett's inequality for tail probability of sum of independent random variables, without imposing any additional condition. The improved version has a cl...
Publikováno v:
Journal of Mathematical Analysis and Applications. 448:1369-1377
We generalize the case p = 2 of the Caccioppoli-type inequality from [5] to multidimensional domains. The argument also provides a simpler proof of the case p = 2 of the original inequality.
Publikováno v:
Operators and Matrices. :241-244
Publikováno v:
Journal of Computational and Applied Mathematics. 304:160-171
In this paper, based on the discrete Wirtinger inequality, a novel summation inequality is established which extends the Jensen inequality. By the technique of the novel inequality, a sufficient criterion on asymptotic stability of discrete neural ne
Autor:
B. L. S. Prakasa Rao
Publikováno v:
Communications in Statistics - Theory and Methods. 46:9407-9414
We obtain a generalization of the Chebyshev's inequality for random elements taking values in a separable Hilbert space with estimated mean and covariance.
Publikováno v:
International Journal of Applied and Computational Mathematics. 3:2139-2149
In this paper, we use Chebyshev cardinal functions for solving a nonlinear age-structured population models. This partial integro-differential equation includes an integral equation as a boundary condition. The proposed method which approximates the
Autor:
Katarzyna Budny
Publikováno v:
Communications in Statistics - Theory and Methods. 45:5220-5223
We extend Chebyshev's inequality to a random vector with a singular covariance matrix. Then we consider the case of a multivariate normal distribution for this generalization.