Zobrazeno 1 - 10
of 26
pro vyhledávání: '"Mulhall, Declan"'
Bosonic degrees of freedom and their emergence as a part of complex quantum many-body dynamics, symmetries, collective behavior, clustering and phase transitions play an important role in modern studies of quantum systems. In this work we present a s
Externí odkaz:
http://arxiv.org/abs/2212.00848
Autor:
Mulhall, Declan
Publikováno v:
Phys. Rev. C 91, 014305,2015
A simple model for open quantum systems is analyzed with Random Matrix Theory. The system is coupled to the continuum in a minimal way. In this paper we see the effect of opening the system on the level statistics, in particular the $\Delta_3(L)$ sta
Externí odkaz:
http://arxiv.org/abs/1407.3241
Autor:
Mulhall, Declan, Moelter, Matthew
Publikováno v:
Mulhall,Declan and Moelter, Matthew J., American Journal of Physics, 82, 665-673 (2014)
We present a graphical approach to understanding the degeneracy, density of states, and cumulative state number for some simple quantum systems. By taking advantage of basic computing operations we define a straightforward procedure for determining t
Externí odkaz:
http://arxiv.org/abs/1406.7216
Autor:
Mulhall, Declan
Publikováno v:
Phys.Rev.C83:054321,2011
The $\Delta_3(L)$ statistic of Random Matrix Theory is defined as the average of a set of random numbers $\{\delta\}$, derived from a spectrum. The distribution $p(\delta)$ of these random numbers is used as the basis of a maximum likelihood method t
Externí odkaz:
http://arxiv.org/abs/1104.2013
Autor:
Mulhall, Declan
Publikováno v:
Phys. Rev. C 80, 034612 (2009)
The $\Delta_3(L)$ statistic is studied as a tool to detect missing levels in the neutron resonance data where 2 sequences are present. These systems are problematic because there is no level repulsion, and the resonances can be too close to resolve.
Externí odkaz:
http://arxiv.org/abs/0906.5094
Publikováno v:
Phys.Rev.C76:064611,2007
The $\Delta_3(L)$ statistic characterizes the fluctuations of the number of levels as a function of the length of the spectral interval. It is studied as a possible tool to indicate the regular or chaotic nature of underlying dynamics, detect missing
Externí odkaz:
http://arxiv.org/abs/0708.0774
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Mulhall, Declan
Publikováno v:
AIP Conference Proceedings; 3/31/2009, Vol. 1109 Issue 1, p90-95, 6p, 3 Charts, 7 Graphs