Zobrazeno 1 - 10
of 86
pro vyhledávání: '"Mukai, Shigeru"'
Autor:
Kanemitsu, Akihiro, Mukai, Shigeru
We describe a general (primitively) polarized K3 surface $(S,h)$ with $(h^2)=24$ as a complete intersection variety with respect to vector bundles on the $6$-dimensional moduli space $\mathcal{N}^-$ of the stable vector bundles of rank two with fixed
Externí odkaz:
http://arxiv.org/abs/2310.02078
We give a formula that relates the difference of the j-invariants with the Borcherds Phi-function, an automorphic form on the period domain for Enriques surfaces characterizing the discriminant divisor.
Comment: Section 8 added, references updat
Comment: Section 8 added, references updat
Externí odkaz:
http://arxiv.org/abs/2103.02540
Autor:
Mukai, Shigeru, Ohashi, Hisanori
Publikováno v:
in {\em{Recent advances in Algebraic geometry}}, London Math. Soc. Lecture Note Ser., 417 (2015)
Let $S$ be the (minimal) Enriques surface obtained from the symmetric quartic surface $(\sum_{i
Externí odkaz:
http://arxiv.org/abs/1507.00682
Autor:
Mukai, Shigeru, Ohashi, Hisanori
An action of a group $G$ on an Enriques surface $S$ is called Mathieu if it acts on $H^0(2K_S)$ trivially and every element of order 2, 4 has Lefschetz number 4. A finite group $G$ has a Mathieu action on some Enriques surface if and only if it is is
Externí odkaz:
http://arxiv.org/abs/1410.7535
Publikováno v:
American Journal of Mathematics, 2018 Dec 01. 140(6), 1471-1519.
Externí odkaz:
https://www.jstor.org/stable/26979616
The Borcherds Phi-function is the automorphic form on the moduli space of Enriques surfaces characterizing the discriminant locus. In this paper, we give an algebro-geometric construction of the Borcherds Phi-function.
Externí odkaz:
http://arxiv.org/abs/1308.6454
Autor:
Mukai, Shigeru, Nasu, Hirokazu
Publikováno v:
J. Algebraic Geom. 18 (2009), no. 4, 691-709
We give a sufficient condition for a first order infinitesimal deformation of a curve on a 3-fold to be obstructed. As application we construct generically non-reduced components of the Hilbert schemes of uniruled 3-folds and the Hom scheme from a ge
Externí odkaz:
http://arxiv.org/abs/math/0609284
Autor:
Mukai, Shigeru
Publikováno v:
Proceedings of the ICM, Beijing 2002, vol. 2, 495--502
A K3 surface is a quaternionic analogue of an elliptic curve from a view point of moduli of vector bundles. We can prove the algebraicity of certain Hodge cycles and a rigidity of curve of genus eleven and gives two kind of descriptions of Fano three
Externí odkaz:
http://arxiv.org/abs/math/0304303
Autor:
Mukai, Shigeru
A Brill-Noether locus is a subscheme of the moduli of bundles E over a curve C defined by requiring E to have a given number of sections, or homomorphisms from another bundle. There are a number of different types, that can be treated by determinanta
Externí odkaz:
http://arxiv.org/abs/alg-geom/9704015