Zobrazeno 1 - 10
of 144
pro vyhledávání: '"Muddappa A"'
Completely mixed linear games and irreducibility concepts for Z-transformations over self-dual cones
Autor:
Gowda, Muddappa Seetharama
In the setting of a self-dual cone in a finite-dimensional inner product space, we consider (zero-sum) linear games. In our previous work, we showed that a Z-transformation with positive value is completely mixed. The present paper considers the case
Externí odkaz:
http://arxiv.org/abs/2310.13464
Autor:
Jeong, Juyoung, Gowda, Muddappa
A Fan-Theobald-von Neumann system is a triple $(V,W,\lambda)$, where $V$ and $W$ are real inner product spaces and $\lambda:V\to W$ is a norm-preserving map satisfying a Fan-Theobald-von Neumann type inequality together with a condition for equality.
Externí odkaz:
http://arxiv.org/abs/2307.08478
Autor:
Gowda, Muddappa
A well-known theorem of Korovkin asserts that if $\{T_k\}$ is a sequence of positive linear transformations on $C[a,b]$ such that $T_k(h)\rightarrow h$ (in the sup-norm on $C[a,b]$) for all $h\in \{1,\phi,\phi^2\}$, where $\phi(t)=t$ on $[a,b]$, then
Externí odkaz:
http://arxiv.org/abs/2209.13303
Autor:
Gowda, Muddappa
The commutation principle of Ramirez, Seeger, and Sossa proved in the setting of Euclidean Jordan algebras says that when the sum of a real valued function $h$ and a spectral function $\Phi$ is minimized/maximized over a spectral set $E$, any local o
Externí odkaz:
http://arxiv.org/abs/2009.04874
Autor:
Gowda, Muddappa, Juyoung, Jeong
Given a linear map $T$ on a Euclidean Jordan algebra of rank $n$, we consider the set of all nonnegative vectors $q$ in $R^n$ with decreasing components that satisfy the pointwise weak-majorization inequality $\lambda(|T(x)|)\underset{w}{\prec}q*\lam
Externí odkaz:
http://arxiv.org/abs/2008.07472
Motivated by Horn's log-majorization (singular value) inequality $s(AB)\underset{log}{\prec} s(A)*s(B)$ and the related weak-majorization inequality $s(AB)\underset{w}{\prec} s(A)*s(B)$ for square complex matrices, we consider their Hermitian analogs
Externí odkaz:
http://arxiv.org/abs/2003.12377
Autor:
Gowda, Muddappa Seetharama
In a Euclidean Jordan algebra V of rank n which carries the trace inner product, to each element x we associate the eigenvalue vector whose components are the eigenvalues of x written in the decreasing order. For any number p between (and including)
Externí odkaz:
http://arxiv.org/abs/1809.05417
Autor:
Gowda, Muddappa, Jeong, Juyoung
Let V be a Euclidean Jordan algebra of rank n. The eigenvalue map from V to R^n takes any element x in V to the vector of eigenvalues of x written in the decreasing order. A spectral set in V is the inverse image of a permutation set in R^n under the
Externí odkaz:
http://arxiv.org/abs/1805.01744
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Usha, Gayathri, Muddappa, Sapna Chandira, Venkitachalam, Ramanarayanan, Singh V P, Prabath, Rajan, Rakesh R., Ravi, Arjun B.
Publikováno v:
In Journal of Oral Biosciences December 2021 63(4):337-350