Zobrazeno 1 - 10
of 53
pro vyhledávání: '"Mtiri, Foued"'
In this paper, we are concerned with stable solutions , possibly unbounded and sign-changing, of some semi-linear elliptic problem with mixed nonlinear boundary conditions. We establish the nonexistence of stable solutions, the main methods used are
Externí odkaz:
http://arxiv.org/abs/2107.04999
We investigate here the nonlinear elliptic H\'enon type equation: $$\D^{2} u= |x|^a|u|^{p-1}u \; \,\,\mbox{in}\,\,\,\, \R^{n}_{+}, \quad \quad u =\frac{\partial u}{\partial x_n} = 0 \quad \mbox{in}\,\,\,\, \partial \R^{n}_{+},$$ with $p>1$ and $n\geq
Externí odkaz:
http://arxiv.org/abs/2107.04995
Existence and nonexistence results of polyharmonic boundary value problems with supercritical growth
We establish some existence results of polyharmonic boundary value problems with supercritical growth. Our approach is based on truncation argument as well as $L^{\infty}$-bounds. Also, by virtue of Pucci-serrin's variational identity \cite{PS}, we p
Externí odkaz:
http://arxiv.org/abs/2106.03920
Autor:
Mtiri, Foued
We examine the degenerate elliptic system $$-\Delta_{s} u = v^p, \quad -\Delta_{s} v= u^\theta, \quad u,v>0 \quad\mbox{in }\; \mathbb{R}^N=\mathbb{R}^{N_1}\times \mathbb{R}^{N_2}, \quad\mbox{where }\;\;\;\; s \geq 0\;\; \mbox{and} \;\;p,\theta >0.$$
Externí odkaz:
http://arxiv.org/abs/2012.11023
Autor:
Mtiri, Foued
We investigate here the degenerate bi-harmonic equation: $$\Delta_{m}^2 u=f(x,u)\; \;\;\mbox{in} \O,\quad u = \Delta u = 0\quad \mbox{on }\; \p\Omega,$$ with $m\ge 2,$ and also the degenerate tri-harmonic equation: $$ -\Delta_{m}^3 u=f(x,u)\;\;\; \mb
Externí odkaz:
http://arxiv.org/abs/2007.10838
Autor:
Mtiri, Foued
We investigate here the following weighted degenerate elliptic system \begin{align*} -\Delta_{s} u = \Big(1+\|\mathbf{x}\|^{2(s+1)}\Big)^{\frac{\alpha}{2(s+1)}} v^p, \quad -\Delta_{s} v = \Big(1+\|\mathbf{x}\|^{2(s+1)}\Big)^{\frac{\alpha}{2(s+1)}}u^\
Externí odkaz:
http://arxiv.org/abs/2007.03009
Autor:
Mtiri, Foued
Cette thèse porte principalement sur l'étude des solutions de certaines équations aux dérivées partielles elliptiques via l'indice de Morse, y compris des solutions stables, i.e. quand l'indice de Morse est égal à zéro. Elle comporte deux par
Externí odkaz:
http://www.theses.fr/2016LORR0150/document
Autor:
Mtiri, Foued
In this paper we prove the Liouville type theorem for stable at infinity solutions of the following equation $$\Delta_{m}^{3}u =|u|^{\theta-1}u\;\;\; \mbox{in}\,\, \mathbb{R}^N,$$ for $1
Externí odkaz:
http://arxiv.org/abs/1803.08436
Autor:
Mtiri, Foued, Ye, Dong
We consider the Lane-Emden system $-\Delta u = v^p$, $-\Delta v= u^\theta$ in $\mathbb{R}^N$, and we prove the nonexistence of smooth positive solutions which are stable outside a compact set, for any $p, \theta > 0$ under the Sobolev hyperbola.
Externí odkaz:
http://arxiv.org/abs/1802.09004
Publikováno v:
AIMS Mathematics; 2024, Vol. 9 Issue 11, p1-22, 22p