Zobrazeno 1 - 10
of 142
pro vyhledávání: '"Moy, Richard A."'
Autor:
Moy, Richard A.
In this paper, we determine the genus of the subgroup lattice of several families of abelian groups. In doing so, we classify all finite abelian groups whose subgroup lattices can be embedded into the torus.
Externí odkaz:
http://arxiv.org/abs/2406.13202
A dessin d'enfant, or dessin, is a bicolored graph embedded into a Riemann surface, and the monodromy group is an algebraic invariant of the dessin generated by rotations of edges about black and white vertices. A rational polygonal billiards surface
Externí odkaz:
http://arxiv.org/abs/2306.01633
Publikováno v:
Involve 16 (2023) 49-58
A dessin d'enfant, or dessin, is a bicolored graph embedded into a Riemann surface, and the monodromy group is an algebraic invariant of the dessin generated by rotations of edges about black and white vertices. A rational billiards surface is a two
Externí odkaz:
http://arxiv.org/abs/2106.15588
Autor:
Filaseta, Michael, Moy, Richard A.
In this paper, we examine how far a polynomial in $\mathbb{F}_2[x]$ can be from a squarefree polynomial. For any $\epsilon>0$, we prove that for any polynomial $f(x)\in\mathbb{F}_2[x]$ with degree $n$, there exists a squarefree polynomial $g(x)\in\ma
Externí odkaz:
http://arxiv.org/abs/1906.07904
Autor:
Cameron, Naiomi, Kemp, Mary, Maslak, Susan, Melamed, Gabrielle, Moy, Richard A., Pham, Jonathan, Wei, Austin
Publikováno v:
Involve 12 (2019) 791-812
A dessin d'enfant, or dessin, is a bicolored graph embedded into a Riemann surface. Acyclic dessins can be described analytically by pre-images of certain polynomials, called Shabat polynomials, and also algebraically by their monodromy groups, that
Externí odkaz:
http://arxiv.org/abs/1805.07530
Autor:
Filaseta, Michael, Moy, Richard
For positive integers $n$, the truncated binomial expansions of $(1+x)^n$ which consist of all the terms of degree $\le r$ where $1 \le r \le n-2$ appear always to be irreducible. For fixed $r$ and $n$ sufficiently large, this is known to be the case
Externí odkaz:
http://arxiv.org/abs/1803.02754
Odlyzko and Stanley introduced a greedy algorithm for constructing infinite sequences with no 3-term arithmetic progressions when beginning with a finite set with no 3-term arithmetic progressions. The sequences constructed from this procedure are kn
Externí odkaz:
http://arxiv.org/abs/1708.01849
Autor:
Moy, Richard A.
Given a set of integers containing no 3-term arithmetic progressions, one constructs a Stanley sequence by choosing integers greedily without forming such a progression. Independent Stanley sequences are a "well-structured" class of Stanley sequences
Externí odkaz:
http://arxiv.org/abs/1707.02037
Autor:
Moy, Richard A., Rolnick, David
Publikováno v:
Discrete Mathematics, 339 (2), 689-698 (2016)
Given a set of integers with no three in arithmetic progression, we construct a Stanley sequence by adding integers greedily so that no arithmetic progression is formed. This paper offers two main contributions to the theory of Stanley sequences. Fir
Externí odkaz:
http://arxiv.org/abs/1502.06013
Autor:
Milman, Anita, Gerlak, Andrea K., Albrecht, Tamee, Colosimo, Mark, Conca, Ken, Kittikhoun, Anoulak, Kovács, Péter, Moy, Richard, Schmeier, Susanne, Wentling, Kelsey, Werick, William, Zavadsky, Ivan, Ziegler, Jim
Publikováno v:
In Global Environmental Change September 2020 64