Zobrazeno 1 - 10
of 3 405
pro vyhledávání: '"Mouzakitis, A."'
Autor:
Pelekis, Sotiris, Karakolis, Evangelos, Lampropoulos, George, Mouzakitis, Spiros, Markaki, Ourania, Ntanos, Christos, Askounis, Dimitris
The present study aims to evaluate the current fuzzy landscape of Trustworthy AI (TAI) within the European Union (EU), with a specific focus on the energy sector. The analysis encompasses legal frameworks, directives, initiatives, and standards like
Externí odkaz:
http://arxiv.org/abs/2412.07782
Autor:
Michalakopoulos, Vasilis, Pelekis, Sotiris, Kormpakis, Giorgos, Karakolis, Vagelis, Mouzakitis, Spiros, Askounis, Dimitris
Publikováno v:
2024 IEEE Conference on Technologies for Sustainability (SusTech)
The analytical prediction of building energy performance in residential buildings based on the heat losses of its individual envelope components is a challenging task. It is worth noting that this field is still in its infancy, with relatively limite
Externí odkaz:
http://arxiv.org/abs/2311.08035
Autor:
Tzortzis, Alexandros-Menelaos, Pelekis, Sotiris, Spiliotis, Evangelos, Mouzakitis, Spiros, Psarras, John, Askounis, Dimitris
Short-term load forecasting (STLF) is crucial for the daily operation of power grids. However, the non-linearity, non-stationarity, and randomness characterizing electricity demand time series renders STLF a challenging task. Various forecasting appr
Externí odkaz:
http://arxiv.org/abs/2310.15555
Autor:
Pelekis, Sotiris, Karakolis, Evangelos, Pountridis, Theodosios, Kormpakis, George, Lampropoulos, George, Mouzakitis, Spiros, Askounis, Dimitris
This paper presents DeepTSF, a comprehensive machine learning operations (MLOps) framework aiming to innovate time series forecasting through workflow automation and codeless modeling. DeepTSF automates key aspects of the ML lifecycle, making it an i
Externí odkaz:
http://arxiv.org/abs/2308.00709
In today's fast-paced world, the rates of stress and depression present a surge. Social media provide assistance for the early detection of mental health conditions. Existing methods mainly introduce feature extraction approaches and train shallow ma
Externí odkaz:
http://arxiv.org/abs/2305.16797
Autor:
Pelekis, Sotiris, Pipergias, Angelos, Karakolis, Evangelos, Mouzakitis, Spiros, Santori, Francesca, Ghoreishi, Mohammad, Askounis, Dimitris
Publikováno v:
Sustainable Energy, Grids and Networks Volume 36, December 2023, 101134
The present study proposes clustering techniques for designing demand response (DR) programs for commercial and residential prosumers. The goal is to alter the consumption behavior of the prosumers within a distributed energy community in Italy. This
Externí odkaz:
http://arxiv.org/abs/2303.00186
Autor:
Pelekis, Sotiris, Karakolis, Evangelos, Silva, Francisco, Schoinas, Vasileios, Mouzakitis, Spiros, Kormpakis, Georgios, Amaro, Nuno, Psarras, John
Publikováno v:
2022 13th International Conference on Information, Intelligence, Systems & Applications (IISA)
In power grids, short-term load forecasting (STLF) is crucial as it contributes to the optimization of their reliability, emissions, and costs, while it enables the participation of energy companies in the energy market. STLF is a challenging task, d
Externí odkaz:
http://arxiv.org/abs/2302.13046
Autor:
Pelekis, Sotiris, Seisopoulos, Ioannis-Konstantinos, Spiliotis, Evangelos, Pountridis, Theodosios, Karakolis, Evangelos, Mouzakitis, Spiros, Askounis, Dimitris
Publikováno v:
Sustainable Energy, Grids and Networks, 2023
Short-term load forecasting (STLF) is vital for the effective and economic operation of power grids and energy markets. However, the non-linearity and non-stationarity of electricity demand as well as its dependency on various external factors render
Externí odkaz:
http://arxiv.org/abs/2302.12168
Autor:
Sotiris Pelekis, Theodosios Pountridis, Georgios Kormpakis, George Lampropoulos, Evangelos Karakolis, Spiros Mouzakitis, Dimitris Askounis
Publikováno v:
SoftwareX, Vol 27, Iss , Pp 101758- (2024)
This paper presents DeepTSF, a comprehensive machine learning operations (MLOps) framework aiming to innovate time series forecasting through workflow automation and codeless modeling. DeepTSF automates key aspects of the machine learning (ML) lifecy
Externí odkaz:
https://doaj.org/article/3e30721114234af18753cc60913a1392
Autor:
Durante, Fabrizio
Publikováno v:
International Statistical Review / Revue Internationale de Statistique, 2013 Aug 01. 81(2), 325-325.
Externí odkaz:
https://www.jstor.org/stable/43298886