Zobrazeno 1 - 3
of 3
pro vyhledávání: '"Mourdas Mohamed"'
Autor:
Mourdas Mohamed, François Sabot, Marion Varoqui, Bruno Mugat, Katell Audouin, Alain Pélisson, Anna-Sophie Fiston-Lavier, Séverine Chambeyron
Publikováno v:
Genome Biology, Vol 24, Iss 1, Pp 1-20 (2023)
Abstract Transposable Element MOnitoring with LOng-reads (TrEMOLO) is a new software that combines assembly- and mapping-based approaches to robustly detect genetic elements called transposable elements (TEs). Using high- or low-quality genome assemb
Externí odkaz:
https://doaj.org/article/0fffd485108c4f1f8a6a3ee90271cf6a
Autor:
Mourdas Mohamed, Nguyet Thi-Minh Dang, Yuki Ogyama, Nelly Burlet, Bruno Mugat, Matthieu Boulesteix, Vincent Mérel, Philippe Veber, Judit Salces-Ortiz, Dany Severac, Alain Pélisson, Cristina Vieira, François Sabot, Marie Fablet, Séverine Chambeyron
Publikováno v:
Cells, Vol 9, Iss 8, p 1776 (2020)
Transposable elements (TEs) are the main components of genomes. However, due to their repetitive nature, they are very difficult to study using data obtained with short-read sequencing technologies. Here, we describe an efficient pipeline to accurate
Externí odkaz:
https://doaj.org/article/984d7da80dd3434ea4be490804e94d58
Autor:
Séverine Chambeyron, Nelly Burlet, Judit Salces-Ortiz, Bruno Mugat, Philippe Veber, François Sabot, Nguyet Thi-Minh Dang, Alain Pélisson, Marie Fablet, Cristina Vieira, Yuki Ogyama, Vincent Mérel, Matthieu Boulesteix, Mourdas Mohamed, Dany Severac
Publikováno v:
Cells
Cells, MDPI, In press, ⟨10.3390/cells9081776⟩
Cells, 2020, 9 (8), pp.1776. ⟨10.3390/cells9081776⟩
Digital.CSIC. Repositorio Institucional del CSIC
instname
Volume 9
Issue 8
Cells, MDPI, 2020, 9 (8), pp.1776. ⟨10.3390/cells9081776⟩
Cells, Vol 9, Iss 1776, p 1776 (2020)
Cells, MDPI, In press, ⟨10.3390/cells9081776⟩
Cells, 2020, 9 (8), pp.1776. ⟨10.3390/cells9081776⟩
Digital.CSIC. Repositorio Institucional del CSIC
instname
Volume 9
Issue 8
Cells, MDPI, 2020, 9 (8), pp.1776. ⟨10.3390/cells9081776⟩
Cells, Vol 9, Iss 1776, p 1776 (2020)
Transposable elements (TEs) are the main components of genomes. However, due to their repetitive nature, they are very difficult to study using data obtained with short-read sequencing technologies. Here, we describe an efficient pipeline to accurate
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5b0e32791a8fbe4b11174f1d2306c731
http://www.documentation.ird.fr/hor/fdi:010079692
http://www.documentation.ird.fr/hor/fdi:010079692