Zobrazeno 1 - 10
of 12
pro vyhledávání: '"Mourad Azhari"'
Publikováno v:
In Procedia Computer Science 2023 220:998-1002
Publikováno v:
Innovations in Smart Cities Applications Volume 6 ISBN: 9783031268519
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::9353246f7e64a3ef048693c5a919d54e
https://doi.org/10.1007/978-3-031-26852-6_53
https://doi.org/10.1007/978-3-031-26852-6_53
Autor:
Taoufiq El Harrouti, Mourad Azhari, Abdellah Abouabdellah, Abdelaziz Hamamou, Abderahim Bajit
Publikováno v:
Lecture Notes on Data Engineering and Communications Technologies ISBN: 9783031151903
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::4713b8daf0f33d6712bafd2897b37f0d
https://doi.org/10.1007/978-3-031-15191-0_47
https://doi.org/10.1007/978-3-031-15191-0_47
Publikováno v:
ANT/EDI40
Higgs Boson is an elementary particle that gives the mass to everything in the natural world. The discovery of the Higgs Boson is a major challenge for particle physics. This paper proposes to solve the Higgs Boson Classification Problem with four Ma
Publikováno v:
ANT/EDI40
The pulsar classification represents a major issue in the astrophysical area. The Bagging Algorithm is an ensemble method widely used to improve the performance of classification algorithms, especially in the case of pulsar search. In this way, our p
Publikováno v:
ANT/EDI40
The latent transition analysis (LTA) model is a version of Latent Class Analysis (LCA) which is used in longitudinal data analysis. The goal of LTA is to examine the variation over time and to identify the association of repeated measures. LTA gives
Publikováno v:
Recent Advances in Intuitionistic Fuzzy Logic Systems and Mathematics ISBN: 9783030539283
Searching for exotic particles in high-energy represents a major challenge for physicists. In this paper, we propose to solve the binary classification problem in the area of exotic particles using the Apache Spark environment with the Mlib library.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::93ef8ba0286b4b2ff058bfa82a0f8e2c
https://doi.org/10.1007/978-3-030-53929-0_8
https://doi.org/10.1007/978-3-030-53929-0_8
Publikováno v:
Innovations in Smart Cities Applications Edition 3 ISBN: 9783030376284
Random Forests are an ensemble learning method that refers to train individual classifiers and aggregates their predictors to produce one optimal predictive model. In this paper, we compare the accuracy metric of six Random Forest methods implemented
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::78f83d9fe648cd13b60f187c222785ae
https://doi.org/10.1007/978-3-030-37629-1_57
https://doi.org/10.1007/978-3-030-37629-1_57
Publikováno v:
SCA
Random Forest Algorithm is a method of machine learning that refers to train individual classifiers and aggregates their predictors. It is specifically reserved to decision tree classifiers and used for classification and regression problems in sever
Publikováno v:
Big Data and Networks Technologies ISBN: 9783030236717
Ensemble methods are a machine learning technique that combines several base models in order to produce one optimal predictive model. In this paper, we compare accuracy metric of three ensemble methods: Bagging, Random Forest, and Boosting. Then, We
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::492d7fcac88bf19de93d3b6d4653dcdb
https://doi.org/10.1007/978-3-030-23672-4_14
https://doi.org/10.1007/978-3-030-23672-4_14