Zobrazeno 1 - 10
of 50
pro vyhledávání: '"Moulay-Tahar Benameur"'
Autor:
Moulay-Tahar Benameur
Publikováno v:
Perspectives in Scalar Curvature ISBN: 9789811249990
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::481849d3ddfc034eb7a7d2889405c6ee
https://doi.org/10.1142/9789811273230_0023
https://doi.org/10.1142/9789811273230_0023
Autor:
Indrava Roy, Moulay-Tahar Benameur
Publikováno v:
Journal of Noncommutative Geometry. 15:1-39
This is the second part of our series about the Higson-Roe sequence for \'etale groupoids. We devote this part to the proof of the universal $K$-theory surgery exact sequence which extends the seminal results of N. Higson and J. Roe to the case of tr
Publikováno v:
Inventiones Mathematicae
Inventiones Mathematicae, Springer Verlag, 2019, 215 (1), pp.367-382. ⟨10.1007/s00222-018-0829-6⟩
Inventiones Mathematicae, Springer Verlag, 2019, 215 (1), pp.367-382. ⟨10.1007/s00222-018-0829-6⟩
We extend the deep and important results of Lichnerowicz, Connes, and Gromov-Lawson which relate geometry and characteristic numbers to the existence and non-existence of metrics of positive scalar curvature (PSC). In particular, we show: that a spin
Publikováno v:
Journal of Functional Analysis
Journal of Functional Analysis, Elsevier, 2017, 273 (2), pp.496-558. ⟨10.1016/j.jfa.2017.03.009⟩
Journal of Functional Analysis, 2017, 273 (2), pp.496-558. ⟨10.1016/j.jfa.2017.03.009⟩
Journal of Functional Analysis, Elsevier, 2017, 273 (2), pp.496-558. ⟨10.1016/j.jfa.2017.03.009⟩
Journal of Functional Analysis, 2017, 273 (2), pp.496-558. ⟨10.1016/j.jfa.2017.03.009⟩
Given a gerbe $L$, on the holonomy groupoid $\mathcal G$ of the foliation $(M, \mathcal F)$, whose pull-back to $M$ is torsion, we construct a Connes $\Phi$-map from the twisted Dupont-Sullivan bicomplex of $\mathcal G$ to the cyclic complex of the $
Autor:
Moulay-Tahar Benameur, Indrava Roy
We prove an equivariant localized and norm-controlled version of the Pimsner-Popa-Voiculescu theorem. As an application, we deduce a proof of the Paschke-Higson duality for transformation groupoids.
Comment: 28 pages - Made some corrections in t
Comment: 28 pages - Made some corrections in t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6217ed7feff5376519c91d393dbd1aba
http://arxiv.org/abs/2001.09811
http://arxiv.org/abs/2001.09811
We introduce and study the index morphism for G-invariant leafwise G-transversally elliptic operators on smooth closed foliated manifolds which are endowed with leafwise actions of the compact group G. We prove the usual axioms of excision, multiplic
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::315a4889d2e06c9f9c36d89acca9f894
http://arxiv.org/abs/2001.02428
http://arxiv.org/abs/2001.02428
Publikováno v:
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society, American Mathematical Society, In press, ⟨10.1090/tran/7731⟩
Transactions of the American Mathematical Society, American Mathematical Society, In press, ⟨10.1090/tran/7731⟩
We use the symbol calculus for foliations developed by the authors in 2017 to derive a cohomological formula for the Connes–Chern character of the Type II spectral triple given also by the authors in 2018. The same proof works for the Type I spectr
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::82ffc59824572b957dcaecc53870a74e
https://hal.archives-ouvertes.fr/hal-01819115
https://hal.archives-ouvertes.fr/hal-01819115
In a recent paper, the authors proved that no spin foliation on a compact enlargeable manifold with Hausdorff homotopy graph admits a metric of positive scalar curvature on its leaves. This result extends groundbreaking results of Lichnerowicz, Gromo
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4c21458e310b2d065b3e8b54f7676cfb
Autor:
Varghese Mathai, Moulay-Tahar Benameur
In this note, we prove the magnetic spectral gap-labelling conjecture as stated in [arXiv:1508.01064], in all dimensions, for principal solenoidal tori.
8 pp. Minor revision. To appear in JFA
8 pp. Minor revision. To appear in JFA
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8e6a3739eeafec587b4aa78931c7d3f9
http://arxiv.org/abs/1806.06302
http://arxiv.org/abs/1806.06302
Autor:
Indrava Roy, Moulay-Tahar Benameur
Publikováno v:
Journal of Functional Analysis. 268:974-1031
The goal of this paper is to solve the problem of existence of an l 2 relative eta morphism on the Higson–Roe structure group. Using the Cheeger–Gromov l 2 eta invariant, we construct a group morphism from the Higson–Roe maximal structure group