Zobrazeno 1 - 10
of 19
pro vyhledávání: '"Moulay Chrif Ismaili"'
Publikováno v:
Boletim da Sociedade Paranaense de Matemática, Vol 39, Iss 3 (2020)
Let be k=Q(\sqrt[3]{p},\zeta_3), where p is a prime number such that p \equiv 1 (mod 9), and let C_{k,3} the 3-component of the class group of k. In his work [7], Frank Gerth III proves a conjecture made by Calegari and Emerton which gives a necessar
Externí odkaz:
https://doaj.org/article/57ae360c1d1e4aae95b8020f4cd1d1a1
Publikováno v:
Kyushu Journal of Mathematics. 76:101-118
Publikováno v:
Kyushu Journal of Mathematics. 76(1):101-118
Autor:
Moulay Chrif ISMAILI, Abdelmalek Azizi
Publikováno v:
Annals of the University of Craiova - Mathematics and Computer Science Series. 48:53-62
To prevent an exhaustive key-search attack of the key-exchange protocol using real quadratic fields, we need to ensure that the number l of reduced principal ideals in K is sufficiently large. In this paper we present an example of a family which are
Publikováno v:
Boletim da Sociedade Paranaense de Matemática. 39:37-52
Let $\mathrm{k}=\mathbb{Q}\left(\sqrt[3]{p},\zeta_3\right)$, where $p$ is a prime number such that $p \equiv 1 \pmod 9$, and let $C_{\mathrm{k},3}$ be the $3$-component of the class group of $\mathrm{k}$. In \cite{GERTH3}, Frank Gerth III proves a co
Publikováno v:
Journal of Computer Science. 15:855-860
Let $p\equiv 1\,(\mathrm{mod}\,9)$ be a prime number and $\zeta_3$ be a primitive cube root of unity. Then $\mathrm{k}=\mathbb{Q}(\sqrt[3]{p},\zeta_3)$ is a pure metacyclic field with group $\mathrm{Gal}(\mathrm{k}/\mathbb{Q})\simeq S_3$. In the case
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::414395a134b8205474c047c360fb653e
http://arxiv.org/abs/2103.04184
http://arxiv.org/abs/2103.04184
A Secure and Efficient Authentication and Key Agreement Scheme for e-Health Platforms Using Lattices
Publikováno v:
Research Journal of Applied Sciences, Engineering and Technology. 14:35-39
Publikováno v:
Class Field Theory – Its Centenary and Prospect, K. Miyake, ed. (Tokyo: Mathematical Society of Japan, 2001)
We study the capitulation problem for certain number fields of degree 3, 4, and 6. ¶(I) Capitulation of the 2-ideal classes of $\mathbb{Q}(\sqrt{d}, i)$ (by A. AZIZI) ¶Let $d \in \mathbb{N}$, $i = \sqrt{-1}$, $\mathbf{k} = \mathbb{Q}(\sqrt{d}, i)$,
Let $k=k_0(\sqrt[3]{d})$ be a cubic Kummer extension of $k_0=\mathbb{Q}(\zeta_3)$ with $d>1$ a cube-free integer and $\zeta_3$ a primitive third root of unity. Denote by $C_{k,3}^{(\sigma)}$ the $3$-group of ambiguous classes of the extension $k/k_0$
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::032bdedbf603db08f1aff9fbf007500b
http://arxiv.org/abs/1804.00767
http://arxiv.org/abs/1804.00767