Zobrazeno 1 - 10
of 47
pro vyhledávání: '"Mou, Chenqi"'
Autor:
Mou, Chenqi, Shang, Weifeng
Puzzles are a versatile combinatorial tool to interpret the Littlewood-Richardson coefficients for Grassmannians. In this paper, we propose the concept of puzzle ideals whose varieties one-one correspond to the tilings of puzzles and present an algeb
Externí odkaz:
http://arxiv.org/abs/2407.10927
Autor:
Mou, Chenqi, Song, Qiuye
Blockwise determinantal ideals are those generated by the union of all the minors of specified sizes in certain blocks of a generic matrix, and they are the natural generalization of many existing determinantal ideals like the Schubert and ladder one
Externí odkaz:
http://arxiv.org/abs/2309.15035
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
In this paper, we first prove that when the associated graph of a polynomial set is chordal, a particular triangular set computed by a general algorithm in top-down style for computing the triangular decomposition of this polynomial set has an associ
Externí odkaz:
http://arxiv.org/abs/1811.11023
Autor:
Mou, Chenqi, Bai, Yang
In this paper the chordal graph structures of polynomial sets appearing in triangular decomposition in top-down style are studied when the input polynomial set to decompose has a chordal associated graph. In particular, we prove that the associated g
Externí odkaz:
http://arxiv.org/abs/1802.01752
A characteristic pair is a pair (G,C) of polynomial sets in which G is a reduced lexicographic Groebner basis, C is the minimal triangular set contained in G, and C is normal. In this paper, we show that any finite polynomial set P can be decomposed
Externí odkaz:
http://arxiv.org/abs/1702.08664
Publikováno v:
In Journal of Symbolic Computation January-February 2021 102:108-131
Autor:
Faugère, Jean-Charles, Mou, Chenqi
Publikováno v:
Journal of Symbolic Computation, 2017, 80(3): 538-569
Given a zero-dimensional ideal I in K[x1,...,xn] of degree D, the transformation of the ordering of its Groebner basis from DRL to LEX is a key step in polynomial system solving and turns out to be the bottleneck of the whole solving process. Thus it
Externí odkaz:
http://arxiv.org/abs/1304.1238
Autor:
Faugère, Jean-Charles, Mou, Chenqi
Publikováno v:
In Journal of Symbolic Computation May-June 2017 80 Part 3:538-569