Zobrazeno 1 - 10
of 25
pro vyhledávání: '"Motlochova, Lenka"'
Autor:
Hrivnák, Jiří, Motlochová, Lenka
Publikováno v:
J. Math. Phys. 59, 063503 (2018)
The discrete cosine and sine transforms are generalized to a triangular fragment of the honeycomb lattice. The honeycomb point sets are constructed by subtracting the root lattice from the weight lattice points of the crystallographic root system $A_
Externí odkaz:
http://arxiv.org/abs/1706.05672
Autor:
Hrivnák, Jiří, Motlochová, Lenka
Four types of discrete transforms of Weyl orbit functions on the finite point sets are developed. The point sets are formed by intersections of the dual-root lattices with the fundamental domains of the affine Weyl groups. The finite sets of weights,
Externí odkaz:
http://arxiv.org/abs/1705.11002
Autor:
Motlochova, Lenka
Cette thèse s'intéresse à l'étude des propriétés et applications de quatre familles des fonctions spéciales associées aux groupes de Weyl et dénotées $C$, $S$, $S^s$ et $S^l$. Ces fonctions peuvent être vues comme des généralisations des
Externí odkaz:
http://hdl.handle.net/1866/11153
Publikováno v:
Symmetry 2016, 8(7), 63
The paper develops applications of symmetric orbit functions, known from irreducible representations of simple Lie groups, in numerical analysis. It is shown that these functions have remarkable properties which yield to cubature formulas, approximat
Externí odkaz:
http://arxiv.org/abs/1512.01710
Autor:
Hrivnák, Jiří, Motlochová, Lenka
Publikováno v:
SIAM J. Numer. Anal. 52-6 (2014), pp. 3021-3055
The discrete cosine transforms of types V--VIII are generalized to the antisymmetric and symmetric multivariate discrete cosine transforms. Four families of discretely and continuously orthogonal Chebyshev-like polynomials corresponding to the antisy
Externí odkaz:
http://arxiv.org/abs/1502.04604
Publikováno v:
J. Phys. A: Math. Theor. 45 (2012) 255201
The discrete orthogonality of special function families, called $C$- and $S$-functions, which are derived from the characters of compact simple Lie groups, is described in Hrivn\'ak and Patera (2009 J. Phys. A: Math. Theor. 42 385208). Here, the resu
Externí odkaz:
http://arxiv.org/abs/1206.0240
Publikováno v:
J. Fourier Anal. Appl. 20 (2014), no. 6, pp 1257-1290
Lie groups with two different root lengths allow two mixed sign homomorphisms on their corresponding Weyl groups, which in turn give rise to two families of hybrid Weyl group orbit functions and characters. In this paper we extend the ideas leading t
Externí odkaz:
http://arxiv.org/abs/1202.4415
Autor:
Motlochova, Lenka, Patera, Jiri
Four families of generalizations of trigonometric functions were recently introduced. In the paper the functions are transformed into four families of orthogonal polynomials depending on two variables. Recurrence relations for construction of the pol
Externí odkaz:
http://arxiv.org/abs/1101.3597
Publikováno v:
J. Math. Phys. 51, 073509 (2010)
Properties of 2-dimensional generalizations of sine functions that are symmetric or antisymmetric with respect to permutation of their two variables are described. It is shown that the functions are orthogonal when integrated over a finite region $F$
Externí odkaz:
http://arxiv.org/abs/0912.0241
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.