Zobrazeno 1 - 10
of 22
pro vyhledávání: '"Mostafa Hayajneh"'
Publikováno v:
Linear and Multilinear Algebra. :1-15
Publikováno v:
Results in Mathematics. 78
Publikováno v:
Advances in Operator Theory. 8
Publikováno v:
The Mathematical Gazette. 105:397-409
Following Euler, we denote the side lengths and angles of a triangle ABC by a, b, c, A, B, C in the standard order. Any line segment joining a vertex of ABC to any point on the opposite side line will be called a cevian, and a cevian AA′ of length
Publikováno v:
Positivity. 26
Autor:
Shaima'a Freewan, Mostafa Hayajneh
Let $A_i$ and $B_i$ be positive definite matrices for all $i=1,\cdots,m.$ It is shown that $$\left|\left|\sum_{i=1}^m(A_i^2\sharp B_i^2)^r\right|\right|_1\leq\left|\left|\left(\left(\sum_{i=1}^mA_i\right)^{\frac{pr}{_2}}\left(\sum_{i=1}^mB_i\right)^{
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0f481e7db3b7f49351e986edbe9aeb8d
Publikováno v:
Journal of Geometry. 111
It is well known that the center of mass of a tetrahedron is the intersection of the line segments that join its vertices to the centers of mass of the opposite faces, and that a similar statement holds for simplices in higher dimensions. This paper
Publikováno v:
The Mathematical Gazette. 102:523-527
Publikováno v:
Positivity. 22:1311-1324
In this paper, we propose three new matrix versions of the arithmetic–geometric mean inequality for unitarily invariant norms, which stem from the fact that the Heinz mean of two positive real numbers interpolates between the geometric and arithmet
Publikováno v:
Mathematical Inequalities & Applications. :1175-1183