Zobrazeno 1 - 10
of 37
pro vyhledávání: '"Moss, Gilbert"'
We state a conjecture, local Langlands in families, connecting the centre of the category of smooth representations on $\mathbb{Z}[\sqrt{q}^{-1}]$-modules of a quasi-split $p$-adic group $\mathrm{G}$ (where $q$ is the cardinality of the residue field
Externí odkaz:
http://arxiv.org/abs/2406.09283
Autor:
Moss, Gilbert, Trias, Justin
Let $R$ be a commutative $\mathbb{Z}[1/p]$-algebra, let $m \leq n$ be positive integers, and let $G_n=\text{GL}_n(F)$ and $G_m=\text{GL}_m(F)$ where $F$ is a $p$-adic field. The Weil representation is the smooth $R[G_n\times G_m]$-module $C_c^{\infty
Externí odkaz:
http://arxiv.org/abs/2312.12031
Autor:
Bakeberg, Jacksyn, Gerbelli-Gauthier, Mathilde, Goodson, Heidi, Iyengar, Ashwin, Moss, Gilbert, Zhang, Robin
For $q$ a power of a prime $p$, we study gamma factors of representations of $GL_n(\mathbb{F}_q)$ over an algebraically closed field $k$ of positive characteristic $\ell \neq p$. We show that the reduction mod $\ell$ of the gamma factor defined in ch
Externí odkaz:
http://arxiv.org/abs/2307.07593
Let $G$ be a reductive group over a non-archimedean local field $F$ of residue characteristic $p$. We prove that the Hecke algebras of $G(F)$ with coefficients in a ${\mathbb Z}_{\ell}$-algebra $R$ for $\ell$ not equal to $p$ are finitely generated m
Externí odkaz:
http://arxiv.org/abs/2203.04929
Let $F$ be a nonarchimedean local field of residue characteristic $p$, let $\hat{G}$ be a split reductive group over $\mathbb{Z}[1/p]$ with an action of $W_F$, and let $^LG$ denote the semidirect product $\hat{G}\rtimes W_F$. We construct a moduli sp
Externí odkaz:
http://arxiv.org/abs/2009.06708
Autor:
Matringe, Nadir, Moss, Gilbert
Let $F$ be a non-archimedean local field, let $k$ be an algebraically closed field of characteristic $\ell$ different from the residual characteristic of $F$, and let $A$ be a commutative Noetherian $W(k)$-algebra, where $W(k)$ denotes the Witt vecto
Externí odkaz:
http://arxiv.org/abs/2005.13484
Autor:
Moss, Gilbert
Publikováno v:
Alg. Number Th. 15 (2021) 1181-1212
Let $F$ be a finite extension of $\mathbb{Q}_p$. Let $W(k)$ denote the Witt vectors of an algebraically closed field $k$ of characteristic $\ell$ different from $p$ and $2$, and let $\mathcal{Z}$ be the spherical Hecke algebra for $GL_n(F)$ over $W(k
Externí odkaz:
http://arxiv.org/abs/1909.02709
Autor:
Moss, Gilbert
Let $F$ be a $p$-adic field and choose $k$ an algebraic closure of $\mathbb{F}_{\ell}$, with $\ell$ different from $p$. We define ``nilpotent lifts'' of irreducible generic $k$-representations of $GL_n(F)$, which take coefficients in Artin local $k$-
Externí odkaz:
http://arxiv.org/abs/1905.13487
Autor:
Liu, Baiying, Moss, Gilbert
We prove an analogue of Jacquet's conjecture on the local converse theorem for \ell-adic families of co-Whittaker representations of GL_n(F), where F is a finite extension of Q_p and \ell does not equal p. We also prove an analogue of Jacquet's conje
Externí odkaz:
http://arxiv.org/abs/1711.11159
Autor:
Helm, David, Moss, Gilbert
We prove a descent criterion for certain families of smooth representations of GL_n(F) (F a p-adic field) in terms of the gamma factors of pairs constructed in previous work of the second author. We then use this descent criterion, together with a th
Externí odkaz:
http://arxiv.org/abs/1610.03277