Zobrazeno 1 - 10
of 704
pro vyhledávání: '"Mosquito population"'
Autor:
Kala Agbo Bidi
Publikováno v:
Mathematical Biosciences and Engineering, Vol 21, Iss 6, Pp 6263-6288 (2024)
This paper focuses on the feedback global stabilization and observer construction for a sterile insect technique model. The sterile insect technique (SIT) is one of the most ecological methods for controlling insect pests responsible for worldwide cr
Externí odkaz:
https://doaj.org/article/816f80c501c3417ab7ef74dc9eedd2e3
Publikováno v:
Mathematical Biosciences and Engineering, Vol 21, Iss 4, Pp 5227-5249 (2024)
Mosquito-borne diseases are threatening half of the world's population. To prevent the spread of malaria, dengue fever, or other mosquito-borne diseases, a new disease control strategy is to reduce or eradicate the wild mosquito population by releasi
Externí odkaz:
https://doaj.org/article/c414d74c2118423386270527a7822bdb
Publikováno v:
Mathematical Biosciences and Engineering, Vol 21, Iss 2, Pp 1884-1898 (2024)
Here, we formulated a delayed mosquito population suppression model including two switching sub-equations, in which we assumed that the growth of the wild mosquito population obeys the Ricker-type density-dependent survival function and the release p
Externí odkaz:
https://doaj.org/article/be0b8265acd54cac90c14e19afc6cb8d
Autor:
Zhongcai Zhu, Xue He
Publikováno v:
AIMS Mathematics, Vol 8, Iss 12, Pp 28670-28689 (2023)
Dengue presents over 390 million cases worldwide yearly. Releasing Wolbachia-infected male mosquitoes to suppress wild mosquitoes via cytoplasmic incompatibility has proven to be a promising method for combating the disease. As cytoplasmic incompatib
Externí odkaz:
https://doaj.org/article/db46973166744b47a7b31c39f09f490f
Autor:
Mingzhan Huang, Xiaohuan Yu
Publikováno v:
AIMS Mathematics, Vol 8, Iss 8, Pp 18546-18565 (2023)
This paper focuses on the key issues of mosquito population control, particularly exploring the impact of periodic releases of sterile males in the population model with a stage structure. We construct and analyze a model that includes only sexually
Externí odkaz:
https://doaj.org/article/f914e03d8b86476bb212790575187029
Publikováno v:
AIMS Mathematics, Vol 8, Iss 6, Pp 14027-14046 (2023)
In this paper, we study a kind of mosquito population suppression model incorporating the growth stage as well as the sex structure of mosquitoes. For the general non-autonomous case, a threshold $ m^* $ for the number of sexually active sterile mosq
Externí odkaz:
https://doaj.org/article/806d44d6c3a4448fac55506fa0a43354
Publikováno v:
Nonautonomous Dynamical Systems, Vol 9, Iss 1, Pp 205-236 (2022)
In this paper, we formulate a mathematical model of vector-borne disease dynamics. The model is constructed by considering two models : a baseline model of vector population dynamics due to Lutambi et al. that takes into account the development of th
Externí odkaz:
https://doaj.org/article/fa9bd868efc842ce90ba8ce3614a0169
Autor:
Danilo O. Carvalho, Rachel Morreale, Steven Stenhouse, Daniel A. Hahn, Maylen Gomez, Aaron Lloyd, David Hoel
Publikováno v:
Parasites & Vectors, Vol 15, Iss 1, Pp 1-14 (2022)
Abstract Background The sterile insect technique (SIT), which involves area-wide inundative releases of sterile insects to suppress the reproduction of a target species, has proven to be an effective pest control method. The technique demands the con
Externí odkaz:
https://doaj.org/article/33cd7a2a6be04a5cbf4083453d96b371
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Mathematical Biosciences and Engineering, Vol 19, Iss 12, Pp 12915-12935 (2022)
This paper shows how biological population dynamic models in the form of coupled reaction-diffusion equations with nonlinear reaction terms can be applied to heterogeneous landscapes. The presented systems of coupled partial differential equations (P
Externí odkaz:
https://doaj.org/article/1448838f39024144b99ed56e03ef8296