Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Moseeva, Tatiana"'
Autor:
Moseeva, Tatiana
In this paper, we generalize the result on the average volume of random polytopes with vertices following beta distributionsto the case of non-identically distributed vectors. Specifically,we consider the convex hull of independent random vectors in
Externí odkaz:
http://arxiv.org/abs/2407.10772
Autor:
Moseeva, Tatiana
We present the multidimensional versions of the Pleijel and Ambartzumian--Pleijel identities. We also obtain the generalization of both the Blaschke--Petkantschin and Z\"ahle formulae considering the case when some points are chosen inside the convex
Externí odkaz:
http://arxiv.org/abs/2207.06923
Let $K\subset\mathbb S^{d-1}$ be a convex spherical body. Denote by $\Delta(K)$ the distance between two random points in $K$ and denote by $\sigma(K)$ the length of a random chord of $K$. We explicitly express the distribution of $\Delta(K)$ via the
Externí odkaz:
http://arxiv.org/abs/2007.07297
Autor:
Moseeva, Tatiana
Let $X_0, \ldots, X_l$ be independent standard Gaussian vectors in $\mathbb{R}^d$ such that $l \leqslant d$. We derive an explicit formula for the distribution of the volume of weighted Gaussian simplex without the origin -- $l$-dimensional simplex $
Externí odkaz:
http://arxiv.org/abs/2007.07208
Publikováno v:
Journal of Mathematical Sciences. 268:656-662
Let $K\subset\mathbb S^{d-1}$ be a convex spherical body. Denote by $\Delta(K)$ the distance between two random points in $K$ and denote by $\sigma(K)$ the length of a random chord of $K$. We explicitly express the distribution of $\Delta(K)$ via the