Zobrazeno 1 - 10
of 51
pro vyhledávání: '"Moscariello, Alessio"'
We collect some open problems about minimal presentations of numerical semigroups and, more generally, about defining ideals and free resolutions of their semigroup rings and associated graded rings. We emphasize both long-standing problems and more
Externí odkaz:
http://arxiv.org/abs/2406.00790
We consider the classical problem of determining the largest possible cardinality of a minimal presentation of a numerical monoid with given embedding dimension and multiplicity. Very few values of this cardinality are known. In addressing this probl
Externí odkaz:
http://arxiv.org/abs/2405.19810
In this paper, by using a combinatorial approach, we establish a new upper bound for the F-threshold $c^\mm(\mm)$ of determinantal rings generated by maximal minors. We prove that $c^\mm(\mm)$ coincides with the $a$-invariant in the case of $3\times
Externí odkaz:
http://arxiv.org/abs/2309.17376
Publikováno v:
Proceedings of the American Mathematical Society, vol.152, pp. 3665-3678 (2024)
Let G be a numerical semigroup. In this paper, we prove an upper bound for the Betti numbers of the semigroup ring of G which depends only on the width of G, that is, the difference between the largest and the smallest generator of G. In this way, we
Externí odkaz:
http://arxiv.org/abs/2307.05770
Autor:
Moscariello, Alessio
We prove that the Cohen-Macaulay type of an almost Gorenstein monomial curve $\mathcal{C} \subseteq \mathbb{A}^5$ is bounded.
Comment: Accepted for publication in Communications in Algebra. 9 pages
Comment: Accepted for publication in Communications in Algebra. 9 pages
Externí odkaz:
http://arxiv.org/abs/2208.14100
Autor:
D'Anna, Marco, Moscariello, Alessio
Given coprime positive integers $g_1 < \ldots < g_e$, the Frobenius number $F=F(g_1,\ldots,g_e)$ is the largest integer not representable as a linear combination of $g_1,\ldots,g_e$ with non-negative integer coefficients. Let $n$ denote the number of
Externí odkaz:
http://arxiv.org/abs/2208.14090
Autor:
Moscariello, Alessio
This work is a study of polynomial compositions having a fixed number of terms. We outline a recursive method to describe these characterizations, give some particular results and discuss the general case. In the final sections, some applications to
Externí odkaz:
http://arxiv.org/abs/2104.11704
Autor:
Moscariello, Alessio
Publikováno v:
Moscow J. Comb. Number Th. 10 (2021) 261-270
This work is devoted to proving that, given an integer $x \ge 2$, there are infinitely many perfect powers, coprime with $x$, having exactly $k \ge 3$ non-zero digits in their base $x$ representation, except for the case $x=2, k=4$, for which a known
Externí odkaz:
http://arxiv.org/abs/2101.10415
We extend some results on almost Gorenstein affine monomial curves to the nearly Gorenstein case. In particular, we prove that the Cohen-Macaulay type of a nearly Gorenstein monomial curve in $\mathbb{A}^4$ is at most $3$, answering a question of Sta
Externí odkaz:
http://arxiv.org/abs/2003.05391
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.