Zobrazeno 1 - 10
of 32
pro vyhledávání: '"Mosbahi, Bouzid"'
Autor:
Imed, Basdouri, Mosbahi, Bouzid
We introduce and study a generalized form of derivations for dendriform algebras, specifying all admissible parameter values that define these derivations. Additionally, we present a complete classification of generalized derivations for two-dimensio
Externí odkaz:
http://arxiv.org/abs/2411.05716
A compatible associative algebra is a vector space equipped with two associative multiplication structures that interact in a certain natural way. This article presents the classification of these algebras with dimension less than four, as well as th
Externí odkaz:
http://arxiv.org/abs/2405.18243
The paper concerns the cohomology of (multiplicative) BiHom-associative trialgebras. We first detail the correspondence between central extensions and second cohomology. This is followed by a general cohomology theory that unifies those of BiHom-asso
Externí odkaz:
http://arxiv.org/abs/2404.15567
Autor:
Mansuroglu, Nil, Mosbahi, Bouzid
In this note, our goal is to describe the concept of generalized derivations in the context of BiHom-supertrialgebras. We provide a comprehensive analysis of the properties and applications of these generalized derivations, including their relationsh
Externí odkaz:
http://arxiv.org/abs/2404.12112
Autor:
Mansuroglu, Nil, Mosbahi, Bouzid
BiHom-superdialgebras are clear generalization of Hom-superdialgebras. The purpose of this note is to describe and to survey structures of BiHom-superdialgebras. Then we derive derivations of BiHomsuperdialgebras.
Externí odkaz:
http://arxiv.org/abs/2404.12098
In the present paper, we aim to introduce the cohomology of $\mathcal{O}$-operators defined on the Hom-Lie conformal algebra concerning the given representation. To obtain the desired results, we describe three different cochain complexes and discuss
Externí odkaz:
http://arxiv.org/abs/2312.04121
In this paper, we present some basic properties concerning the quasi-derivation algebra $QDer(\mathcal{A})$ and the quasi-centroid algebra $QC(\mathcal{A})$ of associative algebra $\mathcal{A}$. Furthermore, using the result on classification of two,
Externí odkaz:
http://arxiv.org/abs/2306.14331
The classification of algebraic structures and their derivations is an important and ongoing research area in mathematics and physics, and various results have been obtained in this field. This article presents the classification of tridendriform alg
Externí odkaz:
http://arxiv.org/abs/2305.08513
In the current research work, our basic objective is to investigate the stucture of Hom-associative trialgebras. Next, we build up one important class of Hom-associative trialgebras and provide properties of right, left and meddle operations in Hom-a
Externí odkaz:
http://arxiv.org/abs/2305.00471
The basic objective of this research work is to investigate the stucture of BiHom-associative trialgebras.\,In this respect we build up one important class of BiHom-trialgebras and determine properties of right, left and middle operations in BiHom-as
Externí odkaz:
http://arxiv.org/abs/2304.06781