Zobrazeno 1 - 10
of 291
pro vyhledávání: '"Morton, Patrick"'
Autor:
Morton, Patrick
In this paper a proof is given of Sugawara's conjecture from 1936, that the ray class field of conductor $\mathfrak{f}$ over an imaginary quadratic field $K$ is generated over $K$ by a single primitive $\mathfrak{f}$-division value of the $\tau$-func
Externí odkaz:
http://arxiv.org/abs/2406.11479
The periodic points of the algebraic function defined by the equation $g(x,y) = x^3(4y^2+2y+1)-y(y^2-y+1)$ are shown to be expressible in terms of Ramanujan's cubic continued fraction $c(\tau)$ with arguments in an imaginary quadratic field in which
Externí odkaz:
http://arxiv.org/abs/2311.06591
Autor:
Morton, Patrick
A proof of several identities of Ramanujan involving theta functions of level $7$ is given which uses a specific modular function for $\Gamma_1(7)$ and Klein's projective representation of $PSL(2,7)$ into $PSL(3, \mathbb{C})$. Four identities of Bern
Externí odkaz:
http://arxiv.org/abs/2303.18140
A continued fraction $v(\tau)$ of Ramanujan is evaluated at certain arguments in the field $K = \mathbb{Q}(\sqrt{-d})$, with $-d \equiv 1$ (mod $8$), in which the ideal $(2) = \wp_2 \wp_2'$ is a product of two prime ideals. These values of $v(\tau)$
Externí odkaz:
http://arxiv.org/abs/2210.00659
Autor:
Morton, Patrick
A computational proof is given for congruences modulo $p$ for the class equation $H_{-28p}(X)$, when the prime $p$ satisfies $p \equiv 3$ (mod $4$), and for the product $H_{-7p}(X) H_{-28p}(X)$, when $p \equiv 1$ (mod $4$).
Comment: 20 pages, 6
Comment: 20 pages, 6
Externí odkaz:
http://arxiv.org/abs/2207.14144
Autor:
Morton, Patrick
A formula is proved for the number of linear factors and irreducible cubic factors over $\mathbb{F}_l$ of the Hasse invariant $\hat H_{7,l}(a)$ of the Tate normal form $E_7(a)$ for a point of order $7$, as a polynomial in the parameter $a$, in terms
Externí odkaz:
http://arxiv.org/abs/2206.09801
Autor:
Morton, Patrick
A proof is given of several conjectures from a recent paper of Nakaya concerning the supersingular polynomial $ss_p^{(N*)}(X)$ for the Fricke group $\Gamma_0^*(N)$, for $N \in \{2, 3, 5, 7\}$. One of these conjectures gives a formula for the square o
Externí odkaz:
http://arxiv.org/abs/2105.14532
Autor:
Morton, Patrick, Raianu, Serban
It is shown that $c=-29/16$ is the unique rational number of smallest denominator, and the unique rational number of smallest numerator, for which the map $f_c(x) = x^2+c$ has a rational periodic point of period $3$. Several arithmetic conditions on
Externí odkaz:
http://arxiv.org/abs/2105.07435
Autor:
Morton, Patrick
All the periodic points of a certain algebraic function related to the Rogers-Ramanujan continued fraction $r(\tau)$ are determined. They turn out to be $0, \frac{-1 \pm \sqrt{5}}{2}$, and the conjugates over $\mathbb{Q}$ of the values $r(w_d/5)$, wh
Externí odkaz:
http://arxiv.org/abs/2005.10377
Autor:
Morton, Patrick
It is shown that the number of irreducible quartic factors of the form $g(x) = x^4+ax^3+(11a+2)x^2-ax+1$ which divide the Hasse invariant of the Tate normal form $E_5$ in characteristic $l$ is a simple linear function of the class number $h(-5l)$ of
Externí odkaz:
http://arxiv.org/abs/2002.04134