Zobrazeno 1 - 10
of 71
pro vyhledávání: '"Morton, H. R."'
Autor:
Morton, H. R.
An explicit isomorphism is constructed between the Birman-Wenzl algebra, defined algebraically by J. Birman and H. Wenzl using generators and relations, and the Kauffman algebra, constructed geometrically by H. R. Morton and P. Traczyk in terms of ta
Externí odkaz:
http://arxiv.org/abs/1012.3116
Autor:
Morton, H R, Ryder, N D A
Publikováno v:
Math. Proc. Camb. Philos. Soc 149 (2010), 105-114
We extend a mod 2 relation between the Kauffman and Homfly polynomials, first observed by Rudolph in 1987, to the general Kauffman and Homfly satellite invariants.
Comment: 9 pages
Comment: 9 pages
Externí odkaz:
http://arxiv.org/abs/0902.1339
Autor:
Morton, H. R., Grishanov, S.
Publikováno v:
J. Knot Theory and its Ramifications, 18 (2009), 1597-1622.
Knitted and woven textile structures are examples of doubly periodic structures in a thickened plane made out of intertwining strands of yarn. Factoring out the group of translation symmetries of such a structure gives rise to a link diagram in a thi
Externí odkaz:
http://arxiv.org/abs/0806.2824
Autor:
Morton, H. R., Ryder, N.
Publikováno v:
J.Knot Theor.Ramifications 18:1423-1438,2009
Pairs of genus 2 mutant knots can have different Homfly polynomials, for example some 3-string satellites of Conway mutant pairs. We give examples which have different Kauffman 3-variable polynomials, answering a question raised by Dunfield et al in
Externí odkaz:
http://arxiv.org/abs/0708.0514
Autor:
Morton, H. R., Manchon, P. M. G.
Publikováno v:
J. London Math. Soc. 78 (2008), 305-328.
The oriented framed Homfly skein C of the annulus provides the natural parameter space for the Homfly satellite invariants of a knot. It contains a submodule C+ isomorphic to the algebra of the symmetric functions. We collect and expand formulae rela
Externí odkaz:
http://arxiv.org/abs/0707.2851
Autor:
Morton, H. R.
Publikováno v:
Mathematical Proceedings of the Cambridge Philosophical Society 146 (2009), 95-107
Mutant knots, in the sense of Conway, are known to share the same Homfly polynomial. Their 2-string satellites also share the same Homfly polynomial, but in general their m-string satellites can have different Homfly polynomials for m>2. We show that
Externí odkaz:
http://arxiv.org/abs/0705.1321
Autor:
Morton, H. R.
Publikováno v:
Algebr. Geom. Topol. 7 (2007) 327-338
Given an invariant J(K) of a knot K, the corresponding (1,1)-tangle invariant J'(K)=J(K)/J(U) is defined as the quotient of J(K) by its value J(U) on the unknot U. We prove here that J' is always an integer 2-variable Laurent polynomial when J is the
Externí odkaz:
http://arxiv.org/abs/math/0606336
Autor:
Andersen, J. E., Askitas, N., Bar-Natan, D., Baseilhac, S., Benedetti, R., Bigelow, S., Boileau, M., Bott, R., Carter, J. S., Deloup, F., Dunfield, N., Fenn, R., Ferrand, E., Garoufalidis, S., Goussarov, M., Guadagnini, E., Habiro, H., Hansen, S. K., Harikae, T., Haviv, A., Jeong, M. -J., Jones, V., Kashaev, R., Kawahigashi, Y., Kerler, T., Kidwell, M., Kohno, T., Kricker, A., Le, T. T. Q., Lescop, C., Lin, X. -S., Masbaum, G., Massuyeau, G., Morita, S., Morton, H. R., Murakami, H., Murakami, J., Nakanishi, Y., Ohtsuki, T., Ohyama, Y., Okamoto, M., Okuda, N., Park, C. -Y., Pilo, L., Polyak, M., Przytycki, J., Roberts, J., Rourke, C., Rozansky, L., Sanderson, B., Sato, N., Shinohara, Y., Stanford, T., Stoimenow, A., Takata, T., Thurston, D., Turaev, V., Viro, O., Willerton, S., Yokota, Y.
Publikováno v:
Geom. Topol. Monogr. 4 (2002) 377-572
This is a list of open problems on invariants of knots and 3-manifolds with expositions of their history, background, significance, or importance. This list was made by editing open problems given in problem sessions in the workshop and seminars on `
Externí odkaz:
http://arxiv.org/abs/math/0406190
Autor:
Bae, Yongju, Morton, H. R.
Publikováno v:
Journal of Knot Theory and its Ramifications, 12 (2003), 359-373.
We adapt Thistlethwaite's alternating tangle decomposition of a knot diagram to identify the potential extreme terms in its bracket polynomial, and give a simple combinatorial calculation for their coefficients, based on the intersection graph of cer
Externí odkaz:
http://arxiv.org/abs/math/0012089
Autor:
Morton, H. R., Rampichini, M.
Publikováno v:
Knots in Hellas 98, Proceedings of the International Conference on Knot Theory and its Ramifications, ed. C.Gordon et al., World Scientific (2000), 335-346.
This paper is concerned with detecting when a closed braid and its axis are 'mutually braided' in the sense of Rudolph. It deals with closed braids which are fibred links, the simplest case being closed braids which present the unknot. The geometric
Externí odkaz:
http://arxiv.org/abs/math/9907017