Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Morozov, Egor"'
Autor:
Morozov, Egor
Publikováno v:
Math Phys Anal Geom 27, 22 (2024)
For each rational number $p/q\in (1/2,\sqrt 2/2)$ one can construct an $\mathbb S^1$-equivariant minimal torus in $\mathbb S^3$ called Otsuki torus and denoted by $O_{p/q}$. The Lawson's bipolar surface construction applied to $O_{p/q}$ gives a minim
Externí odkaz:
http://arxiv.org/abs/2207.06008
Autor:
Medvedev, Vladimir, Morozov, Egor
Fraser-Sargent surfaces are free boundary minimal surfaces in the four-dimensional unit Euclidean ball. Extended infinitely they define immersed minimal surfaces in the Euclidean space. In the present paper we compute the Morse index and the nullity
Externí odkaz:
http://arxiv.org/abs/2204.07972
Autor:
Morozov, Egor
Publikováno v:
Comput. Aided Geom. Des. 90 (2021), 102035
We prove (under some technical assumptions) that each surface in $\mathbb R^3$ containing two arcs of parabolas with axes parallel to $Oz$ through each point has a parametrization $\left(\frac{P(u,v)}{R(u,v)},\frac{Q(u,v)}{R(u,v)},\frac{Z(u,v)}{R^2(u
Externí odkaz:
http://arxiv.org/abs/2002.01355
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Morozov, Egor
Publikováno v:
SEMR 17 (2020), 1580-1587
We consider an interesting class of combinatorial symmetries of polytopes which we call \emph{edge-length preserving combinatorial symmetries}. These symmetries not only preserve the combinatorial structure of a polytope but also map each edge of the
Externí odkaz:
http://arxiv.org/abs/1808.09495
Autor:
Morozov, Egor
The aim of this paper is to generalize Apollonius' problem. The problem is to construct a circle that is tangent to three given circles in a plane. We find the maximum possible number of solution circles in the case of more than the three given circl
Externí odkaz:
http://arxiv.org/abs/1611.03090
Autor:
Morozov, Egor
Publikováno v:
In Computer Aided Geometric Design October 2021 90
Autor:
Morozov, Egor
We obtain estimates on the Morse index and nullity of bipolar surfaces to Otsuki tori $\tilde O_{p/q}$ for $p/q$ sufficiently close to $\sqrt{2}/2$.
Comment: 16 pages
Comment: 16 pages
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::cf9d6e65fd123ff5e3eab412d131e6fa
Autor:
Kochura, Sergey G., Shkolny, Vadim N., Suntsov, Sergey B., Morozov, Egor A., Klimkin, Oleg A., Karaban, Vadim M.
На примере создания бортовой радиоэлектронной аппаратуры (РЭА) космического аппарата (КА) представлены результаты разработки и апробац
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=httpsopenrep::bd82b4fe1b3c9bbb14e5c9c31bb6075c
https://openrepository.ru/article?id=458693
https://openrepository.ru/article?id=458693