Zobrazeno 1 - 10
of 35
pro vyhledávání: '"Moritz Hardt"'
Autor:
Aijia Cai, Moritz Hardt, Paul Schneider, Rafael Schmid, Claudia Lange, Dirk Dippold, Dirk W. Schubert, Anja M. Boos, Annika Weigand, Andreas Arkudas, Raymund E. Horch, Justus P. Beier
Publikováno v:
BMC Biotechnology, Vol 18, Iss 1, Pp 1-12 (2018)
Abstract Background The creation of functional skeletal muscle via tissue engineering holds great promise without sacrificing healthy donor tissue. Different cell types have been investigated regarding their myogenic differentiation potential under t
Externí odkaz:
https://doaj.org/article/3bcf16a3012c4592a5122d29a8574515
Publikováno v:
Communications of the ACM. 64:107-115
Despite their massive size, successful deep artificial neural networks can exhibit a remarkably small gap between training and test performance. Conventional wisdom attributes small generalization error either to properties of the model family or to
Autor:
Kristin E. Porter, Malte Möser, Flora Wang, Bingyu Zhao, Wei Lee Woon, Yoshihiko Suhara, Adaner Usmani, Erik H. Wang, Kun Jin, Samantha Weissman, William Eggert, Hamidreza Omidvar, Andrew Or, Lisa M Hummel, Gregory Faletto, Ben Sender, Qiankun Niu, Viola Mocz, Antje Kirchner, Catherine Wu, Karen Ouyang, Ian Lundberg, Allison C. Morgan, Abdulla Alhajri, Arvind Narayanan, Khaled AlGhoneim, Louis Raes, Ilana M. Horwitz, Barbara E. Engelhardt, Ben Leizman, Crystal Qian, Drew Altschul, Guanhua He, Jeanne Brooks-Gunn, Ridhi Kashyap, Eaman Jahani, Ryan James Compton, Anna Filippova, Sara McLanahan, Tejomay Gadgil, Claudia V. Roberts, Muna Adem, Julia Wang, Jeremy Freese, Alexander T. Kindel, Daniel E Rigobon, Naijia Liu, Lisa P. Argyle, Mayank Mahajan, Jonathan D Tang, Moritz Hardt, Ethan Porter, Diana Mercado-Garcia, Andrew Halpern-Manners, Anahit Sargsyan, Duncan J. Watts, Alex Pentland, Sonia P Hashim, Dean Knox, Onur Varol, Ryan Amos, James M. Wu, Thomas Davidson, Emma Tsurkov, Bernie Hogan, Areg Karapetyan, William Nowak, Jingwen Yin, Livia Baer-Bositis, Landon Schnabel, Chenyun Zhu, Noah Mandell, Ahmed Musse, Yue Gao, Josh Gagné, Stephen McKay, Jennie E. Brand, Abdullah Almaatouq, Katy M. Pinto, Andrew E Mack, Austin van Loon, Bedoor K. AlShebli, Helge Marahrens, Xiafei Wang, Bryan Schonfeld, Sonia Hausen, Kengran Yang, Maria Wolters, Brandon M. Stewart, Naman Jain, Moritz Büchi, Nicole Bohme Carnegie, Redwane Amin, Caitlin Ahearn, Kirstie Whitaker, Bo-Ryehn Chung, Diana Stanescu, Thomas Schaffner, Patrick Kaminski, David Jurgens, Kivan Polimis, Kimberly Higuera, Zhilin Fan, Matthew J. Salganik, Debanjan Datta, Connor Gilroy, E H Kim, Katariina Mueller-Gastell, Karen Levy, Brian J. Goode, Zhi Wang, Tamkinat Rauf
Publikováno v:
PNAS
Proceedings of the National Academy of Sciences of the United States of America (PNAS), 117(15), 8398-8403. NATL ACAD SCIENCES
Proc Natl Acad Sci U S A
Salganik, M J, Lundberg, I, Kindel, A T, Ahearn, C E, Al-ghoneim, K, Almaatouq, A, Altschul, D M, Brand, J E, Carnegie, N B, Compton, R J, Datta, D, Davidson, T, Filippova, A, Gilroy, C, Goode, B J, Jahani, E, Kashyap, R, Kirchner, A, Mckay, S, Morgan, A C, Pentland, A, Polimis, K, Raes, L, Rigobon, D E, Roberts, C V, Stanescu, D M, Suhara, Y, Usmani, A, Wang, E H, Adem, M, Alhajri, A, Alshebli, B, Amin, R, Amos, R B, Argyle, L P, Baer-bositis, L, Büchi, M, Chung, B, Eggert, W, Faletto, G, Fan, Z, Freese, J, Gadgil, T, Gagné, J, Gao, Y, Halpern-manners, A, Hashim, S P, Hausen, S, He, G, Higuera, K, Hogan, B, Horwitz, I M, Hummel, L M, Jain, N, Jin, K, Jurgens, D, Kaminski, P, Karapetyan, A, Kim, E H, Leizman, B, Liu, N, Möser, M, Mack, A E, Mahajan, M, Mandell, N, Marahrens, H, Mercado-garcia, D, Mocz, V, Mueller-gastell, K, Musse, A, Niu, Q, Nowak, W, Omidvar, H, Or, A, Ouyang, K, Pinto, K M, Porter, E, Porter, K E, Qian, C, Rauf, T, Sargsyan, A, Schaffner, T, Schnabel, L, Schonfeld, B, Sender, B, Tang, J D, Tsurkov, E, Van Loon, A, Varol, O, Wang, X, Wang, Z, Wang, J, Wang, F, Weissman, S, Whitaker, K, Wolters, M K, Woon, W L, Wu, J, Wu, C, Yang, K, Yin, J, Zhao, B, Zhu, C, Brooks-gunn, J, Engelhardt, B E, Hardt, M, Knox, D, Levy, K, Narayanan, A, Stewart, B M, Watts, D J & Mclanahan, S 2020, ' Measuring the predictability of life outcomes with a scientific mass collaboration ', Proceedings of the National Academy of Sciences, vol. 117, no. 15, pp. 8398-8403 . https://doi.org/10.1073/pnas.1915006117
Proceedings of the National Academy of Sciences of the United States of America (PNAS), 117(15), 8398-8403. NATL ACAD SCIENCES
Proc Natl Acad Sci U S A
Salganik, M J, Lundberg, I, Kindel, A T, Ahearn, C E, Al-ghoneim, K, Almaatouq, A, Altschul, D M, Brand, J E, Carnegie, N B, Compton, R J, Datta, D, Davidson, T, Filippova, A, Gilroy, C, Goode, B J, Jahani, E, Kashyap, R, Kirchner, A, Mckay, S, Morgan, A C, Pentland, A, Polimis, K, Raes, L, Rigobon, D E, Roberts, C V, Stanescu, D M, Suhara, Y, Usmani, A, Wang, E H, Adem, M, Alhajri, A, Alshebli, B, Amin, R, Amos, R B, Argyle, L P, Baer-bositis, L, Büchi, M, Chung, B, Eggert, W, Faletto, G, Fan, Z, Freese, J, Gadgil, T, Gagné, J, Gao, Y, Halpern-manners, A, Hashim, S P, Hausen, S, He, G, Higuera, K, Hogan, B, Horwitz, I M, Hummel, L M, Jain, N, Jin, K, Jurgens, D, Kaminski, P, Karapetyan, A, Kim, E H, Leizman, B, Liu, N, Möser, M, Mack, A E, Mahajan, M, Mandell, N, Marahrens, H, Mercado-garcia, D, Mocz, V, Mueller-gastell, K, Musse, A, Niu, Q, Nowak, W, Omidvar, H, Or, A, Ouyang, K, Pinto, K M, Porter, E, Porter, K E, Qian, C, Rauf, T, Sargsyan, A, Schaffner, T, Schnabel, L, Schonfeld, B, Sender, B, Tang, J D, Tsurkov, E, Van Loon, A, Varol, O, Wang, X, Wang, Z, Wang, J, Wang, F, Weissman, S, Whitaker, K, Wolters, M K, Woon, W L, Wu, J, Wu, C, Yang, K, Yin, J, Zhao, B, Zhu, C, Brooks-gunn, J, Engelhardt, B E, Hardt, M, Knox, D, Levy, K, Narayanan, A, Stewart, B M, Watts, D J & Mclanahan, S 2020, ' Measuring the predictability of life outcomes with a scientific mass collaboration ', Proceedings of the National Academy of Sciences, vol. 117, no. 15, pp. 8398-8403 . https://doi.org/10.1073/pnas.1915006117
© This open access article is distributed under Creative Commons Attribution-NonCommercialNoDerivatives License 4.0 (CC BY-NC-ND). How predictable are life trajectories? We investigated this question with a scientific mass collaboration using the co
Publikováno v:
Proceedings of the National Academy of Sciences of the United States of America
Significance The role of social media in political discourse has been the topic of intense scholarly and public debate. Politicians and commentators from all sides allege that Twitter’s algorithms amplify their opponents’ voices, or silence their
Autor:
Moritz Hardt
Publikováno v:
Beyond the Worst-Case Analysis of Algorithms
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::7b5f56ab3d679ef90063715d1acc7d8b
https://doi.org/10.1017/9781108637435.028
https://doi.org/10.1017/9781108637435.028
An introduction to the intellectual foundations and practical utility of the recent work on fairness and machine learning.Fairness and Machine Learning introduces advanced undergraduate and graduate students to the intellectual foundations of this re
Autor:
Claire Cui, Alvin Rajkomar, Andrew M. Dai, Greg S. Corrado, Michaela Hardt, Gerardo Flores, Moritz Hardt, Michael D. Howell
Publikováno v:
CHIL
Much work aims to explain a model's prediction on a static input. We consider explanations in a temporal setting where a stateful dynamical model produces a sequence of risk estimates given an input at each time step. When the estimated risk increase
Publikováno v:
FAccT
Most recommendation engines today are based on predicting user engagement, e.g. predicting whether a user will click on an item or not. However, there is potentially a large gap between engagement signals and a desired notion of "value" that is worth
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::87a94c0b697bfc9a40bd6d08f9c984c9
Publikováno v:
IJCAI
Fairness in machine learning has predominantly been studied in static classification settings without concern for how decisions change the underlying population over time. Conventional wisdom suggests that fairness criteria promote the long-term well
Publikováno v:
FAT
We show through theory and experiment that gradient-based explanations of a model quickly reveal the model itself. Our results speak to a tension between the desire to keep a proprietary model secret and the ability to offer model explanations. On th