Zobrazeno 1 - 10
of 20
pro vyhledávání: '"Moritz Egert"'
Publikováno v:
J. Eur. Math. Soc. (JEMS) 6
J. Eur. Math. Soc. (JEMS) 6, 2020, 22 (9), pp.2943--3058
Journal of the European Mathematical Society
Journal of the European Mathematical Society, European Mathematical Society, 2020, 22 (9), pp.2943-3058. ⟨10.4171/JEMS/980⟩
J. Eur. Math. Soc. (JEMS) 6, 2020, 22 (9), pp.2943--3058
Journal of the European Mathematical Society
Journal of the European Mathematical Society, European Mathematical Society, 2020, 22 (9), pp.2943-3058. ⟨10.4171/JEMS/980⟩
We prove the first positive results concerning boundary value problems in the upper half-space of second order parabolic systems only assuming measurability and some transversal regularity in the coefficients of the elliptic part. To do so, we introd
Autor:
Moritz Egert
Publikováno v:
Journal of Evolution Equations
Journal of Evolution Equations, Springer Verlag, 2020, 20 (3), pp.705-724. ⟨10.1007/s00028-019-00537-1⟩
Journal of Evolution Equations, Springer Verlag, 2020, 20 (3), pp.705-724. ⟨10.1007/s00028-019-00537-1⟩
Second order divergence form operators are studied on an open set with various boundary conditions. It is shown that the p-ellipticity condition of Carbonaro-Dragicevic and Dindos-Pipher implies extrapolation to a holomorphic semigroup on Lebesgue sp
Publikováno v:
Journal of Geometric Analysis
Journal of Geometric Analysis, 2020, 30 (4), pp.3760--3705. ⟨10.1007/s12220-019-00217-z⟩
Journal of Geometric Analysis, 2020, 30 (4), pp.3760--3705. ⟨10.1007/s12220-019-00217-z⟩
We prove a self-improving property for reverse H{\"o}lder inequalities with non-local right hand side. We attempt to cover all the most important situations that one encounters when studying elliptic and parabolic partial differential equations as we
Publikováno v:
Journal de Mathématiques Pures et Appliquées. 121:216-243
We establish a new regularity property for weak solutions of linear parabolic systems with coefficients depending measurably on time as well as on all spatial variables. Namely, weak solutions are locally Holder continuous L p valued functions for so
Publikováno v:
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society, American Mathematical Society, 2021, 149 (4), pp.1677-1685. ⟨10.1090/proc/15344⟩
Proceedings of the American Mathematical Society, American Mathematical Society, 2021, 149 (4), pp.1677-1685. ⟨10.1090/proc/15344⟩
We show that local weak solutions to parabolic systems of p-Laplace type are H{\"o}lder continuous in time with values in a spatial Lebesgue space and H{\"o}lder continuous on almost every time line. We provide an elementary and self-contained proof
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3c01bd0be7a7269afb63b9b968331a53
https://hal.archives-ouvertes.fr/hal-02412580v2/file/BES2-revison.pdf
https://hal.archives-ouvertes.fr/hal-02412580v2/file/BES2-revison.pdf
Autor:
Pascal Auscher, Moritz Egert
In this monograph, for elliptic systems with block structure in the upper half-space and t-independent coefficients, the authors settle the study of boundary value problems by proving compatible well-posedness of Dirichlet, regularity and Neumann pro
Autor:
Pascal Auscher, Moritz Egert
Publikováno v:
The Journal of Geometric Analysis
The Journal of Geometric Analysis, Springer, 2021, ⟨10.1007/s12220-021-00608-1⟩
The Journal of Geometric Analysis, Springer, 2021, ⟨10.1007/s12220-021-00608-1⟩
We present recent results on elliptic boundary value problems where the theory of Hardy spaces associated with operators plays a key role.
Comment: Survey article in the honor of Guido Weiss' ninetieth birthday. Upload of the published version.
Comment: Survey article in the honor of Guido Weiss' ninetieth birthday. Upload of the published version.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4b9a73d282c8c5cbecf4225261129f4c
Autor:
Moritz Egert
Publikováno v:
Journal of Differential Equations
Journal of Differential Equations, Elsevier, 2018, 265 (4), pp.1279-1323. ⟨10.1016/j.jde.2018.04.002⟩
Journal of Differential Equations, Elsevier, In press
Journal of Differential Equations, Elsevier, 2018, 265 (4), pp.1279-1323. ⟨10.1016/j.jde.2018.04.002⟩
Journal of Differential Equations, Elsevier, In press
This article focuses on Lp-estimates for the square root of elliptic systems of second order in divergence form on a bounded domain. We treat complex bounded measurable coefficients and allow for mixed Dirichlet/Neumann boundary conditions on domains
Autor:
Moritz Egert, Sebastian Bechtel
Publikováno v:
Journal of Fourier Analysis and Applications
Journal of Fourier Analysis and Applications, Springer Verlag, 2019, 25 (5), pp.2733-2781. ⟨10.1007/s00041-019-09681-1⟩
Journal of Fourier Analysis and Applications, Springer Verlag, 2019, 25 (5), pp.2733-2781. ⟨10.1007/s00041-019-09681-1⟩
A full interpolation theory for Sobolev functions with smoothness between 0 and 1 and vanishing trace on a part of the boundary of an open set is established. Geometric assumptions are of mostly measure theoretic nature and reach beyond Lipschitz reg
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9109b19ff8f389018ecb0727ee3051df
https://hal.archives-ouvertes.fr/hal-01830708v3/file/Interpolation.pdf
https://hal.archives-ouvertes.fr/hal-01830708v3/file/Interpolation.pdf
Publikováno v:
Advances in Mathematics
Advances in Mathematics, Elsevier, 2020, 375, pp.107410. ⟨10.1016/j.aim.2020.107410⟩
Advances in Mathematics, Elsevier, 2020, 375, pp.107410. ⟨10.1016/j.aim.2020.107410⟩
We obtain the Kato square root estimate for second order elliptic operators in divergence form with mixed boundary conditions on an open and possibly unbounded set in $\mathbb{R}^d$ under two simple geometric conditions: The Dirichlet boundary part i
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8a3b5a73b390f44ece2f44241933f38f