Zobrazeno 1 - 10
of 8 213
pro vyhledávání: '"Morita equivalence"'
We investigate the use of labelled graphs as a Morita equivalence invariant for inverse semigroups. We construct a labelled graph from a combinatorial inverse semigroup $S$ with $0$ admitting a special set of idempotent $\mathcal{D}$-class representa
Externí odkaz:
http://arxiv.org/abs/2411.09015
Higher rank graphs, also known as $k$-graphs, are a $k$-dimensional generalization of directed graphs and a rich source of examples of $C^*$-algebras. In the present paper, we contribute to the geometric classification program for $k$-graph $C^*$-alg
Externí odkaz:
http://arxiv.org/abs/2411.19816
Autor:
De Ro, Joeri
$\DeclareMathOperator{\G}{\mathbb{G}}\DeclareMathOperator{\Rep}{Rep} \DeclareMathOperator{\Corr}{Corr}$Let $\G$ be a locally compact quantum group and $(M, \alpha)$ a $\G$-$W^*$-algebra. The object of study of this paper is the $W^*$-category $\Rep^{
Externí odkaz:
http://arxiv.org/abs/2408.07701
Autor:
Tikaradze, Akaki
In this paper we fully solve the Morita equivalence problem for symplectic reflection algebras associated to direct products of finite subgroups of $SL_2(\mathbb{C})$. Namely, given a pair of such symplectic reflection algebras $H_c, H_{c'}$,then $H_
Externí odkaz:
http://arxiv.org/abs/2404.03811
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Let $E$ and $F$ be finite graphs with no sinks, and $k$ any field. We show that shift equivalence of the adjacency matrices $A_E$ and $A_F$, together with an additional compatibility condition, implies that the Leavitt path algebras $L_k(E)$ and $L_k
Externí odkaz:
http://arxiv.org/abs/2311.02896
We classify principal $2$-blocks of finite groups $G$ with Sylow $2$-subgroups isomorphic to a wreathed $2$-group $C_{2^n}\wr C_2$ with $n\geq 2$ up to Morita equivalence and up to splendid Morita equivalence. As a consequence, we obtain that Puig's
Externí odkaz:
http://arxiv.org/abs/2310.13621
Autor:
An, Jianbei, Eaton, Charles W.
We characterise the Morita equivalence classes of blocks with extraspecial defect groups $p_+^{1+2}$ for $p \geq 5$, and so show that Donovan's conjecture and the Alperin-McKay conjecture hold for such $p$-groups. For $p=3$ we reduce Donovan's conjec
Externí odkaz:
http://arxiv.org/abs/2310.02150
Autor:
Eaton, Charles W., Livesey, Michael
Publikováno v:
Journal of the London Mathematical Society, Volume 109, 2024
We classify all $2$-blocks with abelian defect groups of rank $4$ up to Morita equivalence. The classification holds for blocks over a suitable discrete valuation ring as well as for those over an algebraically closed field. An application is that Br
Externí odkaz:
http://arxiv.org/abs/2310.05734
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.