Zobrazeno 1 - 10
of 38
pro vyhledávání: '"Morini, Fiorenza"'
Let $m,n,s,k$ be four integers such that $1\leqslant s \leqslant n$, $1\leqslant k\leqslant m$ and $ms=nk$. A signed magic array $SMA(m,n; s,k)$ is an $m\times n$ partially filled array whose entries belong to the subset $\Omega\subset \mathbb{Z}$, w
Externí odkaz:
http://arxiv.org/abs/2410.04101
A $\Gamma$-magic rectangle set $\mathrm{MRS}_\Gamma (a, b; c)$ is a collection of $c$ arrays of size $a\times b$ whose entries are the elements of an abelian group $\Gamma$ of order $abc$, each one appearing once and in a unique array in such a way t
Externí odkaz:
http://arxiv.org/abs/2408.04897
In this paper we introduce a special class of partially filled arrays. A magic partially filled array $\mathrm{MPF}_\Omega(m,n; s,k)$ on a subset $\Omega$ of an abelian group $(\Gamma,+)$ is a partially filled array of size $m\times n$ with entries i
Externí odkaz:
http://arxiv.org/abs/2209.10246
Let $m,n,s,k$ be four integers such that $3\leq s \leq n$, $3\leq k\leq m$ and $ms=nk$. Set $d=\gcd(s,k)$. In this paper we show how one can construct a Heffter array $H(m,n;s,k)$ starting from a square Heffter array $H(nk/d;d)$ whose elements belong
Externí odkaz:
http://arxiv.org/abs/2107.08857
Let $m,n,s,k$ be integers such that $4\leq s\leq n$, $4\leq k \leq m$ and $ms=nk$. Let $\lambda$ be a divisor of $2ms$ and let $t$ be a divisor of $\frac{2ms}{\lambda}$. In this paper we construct magic rectangles $MR(m,n;s,k)$, signed magic arrays $
Externí odkaz:
http://arxiv.org/abs/2010.12333
Let $v=2ms+t$ be a positive integer, where $t$ divides $2ms$, and let $J$ be the subgroup of order $t$ of the cyclic group $\mathbb{Z}_v$. An integer Heffter array $H_t(m,n;s,k)$ over $\mathbb{Z}_v$ relative to $J$ is an $m\times n$ partially filled
Externí odkaz:
http://arxiv.org/abs/1910.09921
In this paper we define a new class of partially filled arrays, called relative Heffter arrays, that are a generalization of the Heffter arrays introduced by Archdeacon in 2015. Let $v=2nk+t$ be a positive integer, where $t$ divides $2nk$, and let $J
Externí odkaz:
http://arxiv.org/abs/1906.03932
Publikováno v:
In Discrete Mathematics December 2022 345(12)
In this paper we introduce a particular class of Heffter arrays, called globally simple Heffter arrays, whose existence gives at once orthogonal cyclic cycle decompositions of the complete graph and of the cocktail party graph. In particular we provi
Externí odkaz:
http://arxiv.org/abs/1709.05812
In this paper we propose a conjecture concerning partial sums of an arbitrary finite subset of an abelian group, that naturally arises investigating simple Heffter systems. Then, we show its connection with related open problems and we present some r
Externí odkaz:
http://arxiv.org/abs/1706.00042