Zobrazeno 1 - 10
of 131
pro vyhledávání: '"Morin, Matthew"'
Autor:
Morin, Matthew L., Becker, Giles W.
Trans-scaphoid, trans-radial styloid, trans-triquetral perilunate fracture dislocations are rare. We describe a 19-year-old male who suffered this injury after crashing his bicycle. He underwent open reduction internal fixation and percutaneous pinni
Externí odkaz:
http://hdl.handle.net/10150/625400
http://arizona.openrepository.com/arizona/handle/10150/625400
http://arizona.openrepository.com/arizona/handle/10150/625400
Publikováno v:
The Role of Law Enforcement in Emergency Management and Homeland Security
Publikováno v:
The Role of Law Enforcement in Emergency Management and Homeland Security
Autor:
Morin, Matthew
For every n-vertex tree T, it is known that the chromatic polynomial x(T, k) is equal to k(k — l )ⁿ⁻¹. It is known that the function in noncommuting variables, Y[sub G](x), distinguishes all simple graphs. In the midground, the question of whe
Externí odkaz:
http://hdl.handle.net/2429/17239
Autor:
Morin, Matthew
We define a fat staircase to be a Ferrers diagram corresponding to a partition of the form $(n^{\alpha_n}, {n-1}^{\alpha_{n-1}},..., 1^{\alpha_1})$, where $\alpha = (\alpha_1,...,\alpha_n)$ is a composition, or the $180^\circ$ rotation of such a diag
Externí odkaz:
http://arxiv.org/abs/1003.5605
Autor:
Morin, Matthew
We define a fat staircase to be a Ferrers diagram corresponding to a partition of the form $(n^{\alpha_n}, {n-1}^{\alpha_{n-1}},..., 1^{\alpha_1})$, where $\alpha = (\alpha_1,...,\alpha_n)$ is a composition, or the $180^\circ$ rotation of such a diag
Externí odkaz:
http://arxiv.org/abs/1003.1691
Autor:
Morin, Matthew
We consider the skew diagram $\Delta_n$, which is the $180^\circ$ rotation of the staircase diagram $\delta_n = (n,n-1,n-2,...,2,1)$. We create a staircase with bad foundation by augmenting $\Delta_n$ with another skew diagram, which we call the \tex
Externí odkaz:
http://arxiv.org/abs/1003.1688
Autor:
Wang, Ying, Su, Lijing, Morin, Matthew D., Jones, Brian T., Mifune, Yuto, Shi, Hexin, Wang, Kuan-wen, Zhan, Xiaoming, Liu, Aijie, Wang, Jianhui, Li, Xiaohong, Tang, Miao, Ludwig, Sara, Hildebrand, Sara, Zhou, Kejin, Siegwart, Daniel J., Moresco, Eva Marie Y., Zhang, Hong, Boger, Dale L., Beutler, Bruce
Publikováno v:
Proceedings of the National Academy of Sciences of the United States of America, 2018 Sep 01. 115(37), E8698-E8706.
Externí odkaz:
https://www.jstor.org/stable/26531326
Publikováno v:
J. Combin. Theory Ser. A 115 (2008), pp. 237-253
Let $T$ be an unrooted tree. The \emph{chromatic symmetric function} $X_T$, introduced by Stanley, is a sum of monomial symmetric functions corresponding to proper colorings of $T$. The \emph{subtree polynomial} $S_T$, first considered under a differ
Externí odkaz:
http://arxiv.org/abs/math/0609339
Publikováno v:
In Clinical Simulation in Nursing July 2018 20:28-37