Zobrazeno 1 - 10
of 66
pro vyhledávání: '"Morifuji, Takayuki"'
Autor:
Morifuji, Takayuki, Suzuki, Masaaki
The twisted Alexander polynomial of a knot is defined associated to a linear representation of the knot group. If there exists a surjective homomorphism of a knot group onto a finite group, then we obtain a representation of the knot group by the com
Externí odkaz:
http://arxiv.org/abs/2311.15484
Based on a vanishing theorem for non-fibered knots due to Friedl and Vidussi, we define the twisted Alexander vanishing order of a knot to be the order of the smallest finite group such that the corresponding twisted Alexander polynomial is zero. In
Externí odkaz:
http://arxiv.org/abs/2310.10936
In this paper we give an explicit formula for the twisted Alexander polynomial of any torus link and show that it is a locally constant function on the $SL(2, \mathbb C)$-character variety. We also discuss similar things for the higher dimensional tw
Externí odkaz:
http://arxiv.org/abs/1904.08026
Autor:
Kitano, Teruaki, Morifuji, Takayuki
In this short note we show the existence of an epimorphism between groups of $2$-bridge knots by means of an elementary argument using the Riley polynomial. As a corollary, we give a classification of $2$-bridge knots by Riley polynomials.
Externí odkaz:
http://arxiv.org/abs/1609.07819
Autor:
Morifuji, Takayuki, Tran, Anh T.
In this paper we apply the twisted Alexander polynomial to study the fibering and genus detecting problems for oriented links. In particular we generalize a conjecture of Dunfield, Friedl and Jackson on the torsion polynomial of hyperbolic knots to h
Externí odkaz:
http://arxiv.org/abs/1606.06360
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
For a fibered knot in the 3-sphere the twisted Alexander polynomial associated to an SL(2,C)-character is known to be monic. It is conjectured that for a nonfibered knot there is a curve component of the SL(2,C)-character variety containing only fini
Externí odkaz:
http://arxiv.org/abs/1301.1447
Autor:
Morifuji, Takayuki, Tran, Anh T.
Publikováno v:
Pacific J. Math. 269 (2014) 433-451
In this paper we show that the twisted Alexander polynomial associated to a parabolic representation determines fiberedness and genus of a wide class of 2-bridge knots. As a corollary we give an affirmative answer to a conjecture of Dunfield, Friedl
Externí odkaz:
http://arxiv.org/abs/1301.1101
Autor:
Morifuji, Takayuki
In this short note, we show that the twisted Alexander polynomial associated to a parabolic SL(2,C)-representation detects genus and fibering of the twist knots. As a corollary, a conjecture of Dunfield, Friedl and Jackson is proved for the hyperboli
Externí odkaz:
http://arxiv.org/abs/1209.4239
Autor:
Kim, Taehee, Morifuji, Takayuki
We study the twisted Alexander polynomial from the viewpoint of the SL(2,C)-character variety of nonabelian representations of a knot group. It is known that if a knot is fibered, then the twisted Alexander polynomials associated with nonabelian SL(2
Externí odkaz:
http://arxiv.org/abs/1006.4285