Zobrazeno 1 - 10
of 38
pro vyhledávání: '"Mori, Aki"'
Autor:
Mori, Aki
Let $\mathscr{O}(P)$ and $\mathscr{C}(P)$ denote the order polytope and chain polytope, respectively, associated with a finite poset $P$. We prove the following result: if $P$ is a maximal ranked poset, then the number of triangular $2$-faces of $\ma
Externí odkaz:
http://arxiv.org/abs/2404.00263
In the present paper, we study the upper and lower bounds for the number of facets of symmetric edge polytopes of connected graphs conjectured by Braun and Bruegge. In particular, we show that their conjecture is true for any graph that is the join o
Externí odkaz:
http://arxiv.org/abs/2312.11287
Autor:
Mori, Aki
It will be proved that a $k$-clique in the $1$-skeleton of either the order polytope or the chain polytope corresponds to the $(k-1)$-face, which is a simplex, in each polytope. These results generalize the known explicit descriptions of edges and tr
Externí odkaz:
http://arxiv.org/abs/2307.08447
Publikováno v:
In American Heart Journal September 2023 263:93-103
Autor:
Ohuchi, Hideo, Mori, Aki, Fujita, Ayaka, Kurosaki, Kenichi, Shiraishi, Isao, Nakai, Michikazu
Publikováno v:
In American Heart Journal September 2023 263:15-25
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Let $G$ be a finite connected simple graph with $n$ vertices and $m$ edges. We show that, when $G$ is not bipartite, the number of $4$-cycles contained in $G$ is at most $\binom{m-n+1}{2}$. We further provide a short combinatorial proof of the bound
Externí odkaz:
http://arxiv.org/abs/1801.06169
In the present paper, we introduce a multibasic extension of the Ehrhart theory. We give a multibasic extension of Ehrhart polynomials and Ehrhart series. We also show that an analogue of Ehrhart reciprocity holds for multibasic Ehrhart polynomials.
Externí odkaz:
http://arxiv.org/abs/1509.03121
Publikováno v:
ARS Mathematica Contemporanea 10 (2016) 323-332
Let $d \geq 3$ be an integer. It is known that the number of edges of the edge polytope of the complete graph with $d$ vertices is $d(d-1)(d-2)/2$. In this paper, we study the maximum possible number $\mu_d$ of edges of the edge polytope arising from
Externí odkaz:
http://arxiv.org/abs/1308.3530
Autor:
Hibi, Takayuki, Mori, Aki
Let ${\rm sk}({\mathcal P})$ denote the $1$-skeleton of an convex polytope ${\mathcal P}$. Let $C$ be a clique (=complete subgraph) of ${\rm sk}({\mathcal P})$ and ${\rm conv}(C)$ the convex hull of the vertices of ${\mathcal P}$ belonging to $C$. In
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::880c964572da466e4d12e117732186b2