Zobrazeno 1 - 10
of 92
pro vyhledávání: '"Moran, Molly A."'
Autor:
Guilbault, Craig R., Moran, Molly A.
We generalize Bestvina's notion of a $\mathcal{Z}$-boundary for a group to that of a "coarse $\mathcal{Z}$-boundary." We show that established theorems about $\mathcal{Z}$-boundaries carry over nicely to the more general theory, and that some wished-
Externí odkaz:
http://arxiv.org/abs/2010.08064
Bestvina introduced a $\mathcal{Z}$-structure for a group $G$ to generalize the boundary of a CAT(0) or hyperbolic group. A refinement of this notion, introduced by Farrell and Lafont, includes a $G$-equivariance requirement, and is known as an $\mat
Externí odkaz:
http://arxiv.org/abs/2007.07764
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Algebr. Geom. Topol. 19 (2019) 2077-2097
A $\mathcal{Z}$-structure on a group $G$ was introduced by Bestvina in order to extend the notion of a group boundary beyond the realm of CAT(0) and hyperbolic groups. A refinement of this notion, introduced by Farrell and Lafont, includes a $G$-equi
Externí odkaz:
http://arxiv.org/abs/1808.07923
Autor:
Maillard, François, Jusino, Michelle A., Andrews, Erin, Moran, Molly, Vaziri, Grace J., Banik, Mark T., Fanin, Nicolas, Trettin, Carl C., Lindner, Daniel L., Schilling, Jonathan S.
Publikováno v:
In Fungal Ecology October 2022 59
Autor:
Guilbault, Craig R., Moran, Molly A.
We extend several techniques and theorems from geometric group theory so that they apply to geometric actions on arbitrary proper metric ARs (absolute retracts). A second way that we generalize earlier results is by eliminating freeness requirements
Externí odkaz:
http://arxiv.org/abs/1707.07760
Autor:
Moran, Molly A.
A famous open problem asks whether the asymptotic dimension of a CAT(0) group is necessarily finite. For hyperbolic groups, it is known that asymptotic dimension of the group is bounded above by the dimension of the boundary plus one, which is known
Externí odkaz:
http://arxiv.org/abs/1508.02110
Autor:
Guilbault, Craig R., Moran, Molly A.
Buyalo and Lebedeva have shown that the asymptotic dimension of a hyperbolic group is equal to the dimension of the group boundary plus one. Among the work presented here is a partial extension of that result to all groups admitting $\mathcal{Z}$-str
Externí odkaz:
http://arxiv.org/abs/1507.04395
Autor:
Moran, Molly A.
In this paper, we refine the notion of Z-boundaries of groups introduced by Bestvina and further developed by Dranishnikov. We then show that the standard assumption of finite-dimensionality can be omitted as the result follows from the other assumpt
Externí odkaz:
http://arxiv.org/abs/1406.7451
Publikováno v:
Professional School Counseling, 2019 Sep 01. 23(1), 1-12.
Externí odkaz:
https://www.jstor.org/stable/27136499